LESSON 135

1. triangular pyramid

2. $F=4, E=6, V=4$
$4+4=6+2$

3 ~ 14. All areas are in square units.
All volumes are in cubic units.
3. $L A=P h=(16+5+16+5)(7)=294$
$S A=2 B+L A=2(16)(5)+294=454$
$V=B h=16(5)(7)=560$
4. $S A=2 \pi r^{2}+2 \pi r h=2 \pi(10)^{2}+2 \pi(10)(6)=320 \pi$
$V=\pi r^{2} h=\pi(10)^{2}(6)=600 \pi$
5. The dashed triangle has hypotenuse 17 and base 8.

Use the Pythagorean Theorem to find $h=15$.
$L A=\frac{1}{2} P l=\frac{1}{2}(4)(16)(17)=544$
$S A=B+L A=16(16)+544=800$
$V=\frac{1}{3} B h=\frac{1}{3}(16)(16)(15)=1,280$
6. Use the 5-12-13 Pythagorean triple to find $l=13$.
$S A=\pi r^{2}+\pi r l=\pi(5)^{2}+\pi(5)(13)=90 \pi$
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(5)^{2}(12)=100 \pi$
7. $S A=4 \pi r^{2}=4 \pi(6)^{2}=144 \pi$
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(6)^{3}=288 \pi$
8. $S A=$ hemisphere $L A+$ cylinder $L A+$ hemisphere $L A$
$=$ sphere $S A+$ cylinder $L A$
$=4 \pi r^{2}+2 \pi r h=4 \pi(3)^{2}+2 \pi(3)(4)=60 \pi$
$V=$ hemisphere $V+$ cylinder $V+$ hemisphere V
= sphere $V+$ cylinder V

$$
=\frac{4}{3} \pi r^{3}+\pi r^{2} h=\frac{4}{3} \pi(3)^{3}+\pi(3)^{2}(4)=72 \pi
$$

9. The volume ratio is $15 / 405=1 / 27$, so the side ratio is $1 / 3$ and the area ratio is $1 / 9$. Set up and solve the proportion $1 / 9=9 / x$ to get $x=81$.
So, the base area of the larger pyramid is $81 \mathrm{ft}^{2}$.
10. The cross section is a square.
11. The solid of revolution is a cone.
12. balloon $V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(6)^{3}=288 \pi$

$$
\approx 288(22 / 7) \approx 905.1 \mathrm{in}^{3}
$$

time $=$ volume $/$ rate $\approx 905.1 / 5 \approx 181$
So, it will take about 181 minutes.
13. aquarium $V=B h=10(5)(5)=250$
density $=$ mass/volume
$62=x / 250 ; x=15500$
So, the aquarium can hold 15,500 pounds of water.
14. population density $=$ people/land area
$250=x / 82 ; x=20500$
So, there are 20,500 people in the town.
15. length = distance between two endpoints

$$
=\sqrt{(1-3)^{2}+(-4-2)^{2}}=2 \sqrt{10}
$$

16. midpoint $=\left(\frac{2+6}{2}, \frac{-9+7}{2}\right)=(4,-1)$
17. $A B=17-2=15$
$P=A+1 / 3$ of $A B=2+(1 / 3)(15)=7$
So, P is at 7 .
18. You need to move left and up to find P.
x-length of $\overline{A B}=6-1=5$
x of $P=x$ of $A-(3 / 5)(x$-length $)=6-(3 / 5)(5)=3$
y-length of $\overline{A B}=10-(-5)=15$
y of $P=y$ of $A+(3 / 5)(y$-length $)=-5+(3 / 5)(15)=4$
So, P is at $(3,4)$.
19. original slope $=3$
parallel slope $=3$
point-slope form: $y-1=3(x-2)$
slope-intercept form: $y=3 x-5$
20. original slope $=1 / 2$
perpendicular slope $=-2$
point-slope form: $y-(-1)=(-2)(x-1)$
slope-intercept form: $y=-2 x+1$
21. a. Find the line perpendicular to $y=x+4$ passing through $(0,-2)$.
original slope $=1$
perpendicular slope $=-1$
y-intercept $=-2$
slope-intercept form: $y=-x-2$
22. b. Find the Intersection between $y=x+4$
and $y=-x-2$.
$x+4=-x-2$
$x=-3$
$y=-3+4=1$
The lines intersect at $(-3,1)$.
c. Find the distance between $(0,-2)$ and $(-3,1)$.
$d=\sqrt{(-3-0)^{2}+(1-(-2))^{2}}=3 \sqrt{2}$
23. $A(2,1), B(-2,3), C(0,-3)$
$A B=\sqrt{(-2-2)^{2}+(3-1)^{2}}=2 \sqrt{5}$
$B C=\sqrt{(0-(-2))^{2}+(-3-3)^{2}}=2 \sqrt{10}$
$A C=\sqrt{(0-2)^{2}+(-3-1)^{2}}=2 \sqrt{5}$
$A B=A C$, so the triangle is isosceles.
24. $A(5,0), B(3,-3), C(-2,0), D(0,3)$

You can tell from the graph that it is not a rhombus. It looks like a parallelogram or a rectangle. Check the slopes of the sides. By the slope formula,
slope of $\overline{A B}=\frac{-3-0}{3-5}=\frac{3}{2}$
slope of $\overline{B C}=\frac{0-(-3)}{-2-3}=-\frac{3}{5}$
slope of $\overline{C D}=\frac{3-0}{0-(-2)}=\frac{3}{2}$
slope of $\overline{A D}=\frac{3-0}{0-5}=-\frac{3}{5}$
Opposite sides are parallel, but adjacent sides are not perpendicular. So, it is a parallelogram but not a rectangle.
24. radius = distance between $(1,2)$ and $(5,0)$

$$
=\sqrt{(5-1)^{2}+(0-2)^{2}}=\sqrt{20}
$$

So, the equation is $(x-1)^{2}+(y-2)^{2}=20$.
25. $x^{2}+6 x+y^{2}-4 y=12$
$x^{2}+6 x+9+y^{2}-4 y+4=12+9+4$
$(x+3)^{2}+(y-2)^{2}=25$
The circle has center $(-3,2)$ and radius 5 .
26. $M=\left(\frac{0+2 b}{2}, \frac{0+2 c}{2}\right)=(b, c)$
$N=\left(\frac{2 b+2 a}{2}, \frac{2 c+0}{2}\right)=(a+b, c)$
27. $\overline{M N}$ and $\overline{O B}$ are both horizontal segments and thus parallel. The length of $\overline{O B}$ is $2 a$, and the length of $\overline{M N}$ is $|(a+b)-b|=a$.
So, $\overline{M N}$ is parallel to $\overline{O B}$ and half the length of $\overline{O B}$.

