LESSON 160

1. B, C, D

A parallelogram has no reflectional symmetry. A trapezoid has no reflectional symmetry and no rotational symmetry. A kite has no rotational symmetry.
2. 3 lines of symmetry
4. $\overline{X^{\prime} Y^{\prime}}$
6. $(x, y) \rightarrow(x+2, y-1)$
8. $(3,6)$
10. $\angle Y C Y^{\prime}$ and $\angle Z C Z^{\prime}$
12. 270°
14. $(6,-12)$
16. Let $k=$ scale facto
$k A B=A^{\prime} B^{\prime}$
$8 k=12$
$k=3 / 2$
3. $180 / 3=60^{\circ}$
5. $(-2,-4)$
7. $\overline{Y Y^{\prime}}$ and $\overline{Z Z^{\prime}}$
9. y-axis or $x=0$
11. $(6,3)$
13. $X^{\prime} Y^{\prime}=5 X Y=5(2)=10$
15. 4

Use k to find x.

$$
\begin{aligned}
x & =B^{\prime} C^{\prime}=k B C \\
& =(3 / 2) 12=18
\end{aligned}
$$

A dilation produces similar figures, so you could set up and solve the proportion $A B / A^{\prime} B^{\prime}=B C / B^{\prime} C^{\prime}$ to find x.
17. A, B, C
18. A, B, C, D
19. A, D
20. The translation maps $P(3,-6)$ to $P^{\prime}(0,-6)$.

The reflection maps $P^{\prime}(0,-6)$ to $P^{\prime \prime}(0,-6)$.
So, the final image is $(0,-6)$.
21. The dilation maps $P(3,-6)$ to $P^{\prime}(1,-2)$.

The rotation maps $P^{\prime}(1,-2)$ to $P^{\prime \prime}(-1,2)$. The final image is $(-1,2)$.
22. Answers may vary. Sample(s):
a reflection over the y-axis followed by a translation of 1 unit left and 5 units down
23. Answers may vary. Sample(s):
a dilation about the origin by scale factor $5 / 2$ followed by a translation of 1 unit down
24. a translation by the rule $(x, y) \rightarrow(x, y-2)$; A composition of translations is a translation.
25. a rotation of 180° about the origin; A composition of reflections over two intersecting lines is a rotation.
26. A, B, E

