LESSON 161 ·····

1. 55555

2.

- 3. Counterexamples may vary. Samples are given.
 - A) false; 1 + 3 = 4
 - B) true
 - C) true
 - D) false; 1 − (−1) = 2
 - E) true; x + (x + 1) + (x + 2) = 3x + 3 = 3(x + 1)
 - F) false; |0| = 0. Zero is neither negative nor positive.
- If an angle measures 180°, then it is a straight angle.
 If an angle is a straight angle, then it measures 180°.
- 5. Two angles are adjacent if and only if they have a common vertex and a common side but do not overlap. If two angles are adjacent, then they have a common vertex and a common side but do not overlap. If two angles have a common vertex and a common side but do not overlap, then they are adjacent.
- **6.** If *M* bisects \overline{PQ} , then PM = MQ.
- 7. A) Division Property
 - B) Subtraction Property
 - C) Symmetric Property
 - D) Transitive Property
- 8. 2. Distributive Property
 - 4. Subtraction Property
- 9. 3. All right angles are congruent.
 - 4. Definition of congruent angles
- 10. C, A, D, E, B
- **11.** Answers may vary. Sample(s):

A reflection over the x-axis followed by a translation of 4 units right will map $\triangle ABC$ to $\triangle DEF$. Therefore, the two triangles are congruent.

- 12. 2. Definition of complementary angles
 - 3. $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$
 - 4. Subtraction Property
 - 5. Definition of congruent angles
- **13.** 2. If alternate exterior angles are congruent, then lines are parallel.
 - 4. If alternate interior angles are congruent, then lines are parallel.
 - 5. Transitive Property
- 14. parallel, perpendicular

- 15. Statements (Reasons)
 - 1. $\overline{AC} \parallel l$ (Given)
 - 2. $\angle 4 \cong \angle 1, \angle 5 \cong \angle 3$ (If lines are parallel, then alternate interior angles are congruent.)
 - 3. $m \angle 4 = m \angle 1, m \angle 5 = m \angle 3$ (Definition of congruent angles)
 - 4. $m \angle 4 + m \angle 2 + m \angle 5 = 180^{\circ}$ (Angle Addition Postulate)
 - 5. $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$ (Substitution Property)
- **16.** A polygon with *n* sides can be divided into n 2 triangles by the diagonals drawn from one vertex. Because the interior angle sum of each triangle is 180° , the interior angle sum of the polygon is $180(n - 2)^\circ$.