LESSON 170

1. $\quad P(5,2)$ and $Q(-1,-2)$
$P Q=\sqrt{(-1-5)^{2}+(-2-2)^{2}}=2 \sqrt{13}$
2. center $=$ midpoint between $(8,0)$ and $(-2,4)$

$$
=\left(\frac{8-2}{2}, \frac{0+4}{2}\right)=(3,2)
$$

3. $A B=13-3=10$
$P=A+2 / 5$ of $A B=3+(2 / 5)(10)=7$
So, P is at 7 .
4. You need to move right and down to find P.
x-length of $\overline{A B}=15-3=12$
x of $P=x$ of $A+(1 / 4)(x$-length $)=3+(1 / 4)(12)=6$
y-length of $\overline{A B}=1-(-3)=4$
y of $P=y$ of $A-(1 / 4)(y$-length $)=1-(1 / 4)(4)=0$
So, P is at $(6,0)$.
5. A) vertical
B) vertical
C) horizontal
D) slope $=2$
E) slope $=1 / 2$
F) slope $=2$
G) slope $=-2$

Parallel lines: A and B, D and F
Perpendicular lines: A and C, B and C, E and G
6. original slope $=3$
parallel slope $=3$
point-slope form: $y-2=3(x-0)$
slope-intercept form: $y=3 x+2$
7. Find a line perpendicular to $\overline{A B}$ and passing through the midpoint of $\overline{A B}$.
slope of $\overline{A B}=-1$
midpoint of $\overline{A B}=(-1,0)$
perpendicular slope $=1$
point-slope form: $y-0=(1)(x-(-1))$
slope-intercept form: $y=x+1$
8. Subtract eq 2 from eq1 to get $3 y=3$ and $y=1$.

Plug y into eq 1 to get $x-1=5$ and $x=6$.
So, the lines intersect at $(6,1)$.
9. a. Find the line perpendicular to $x+3 y=6$ passing through $(2,-2)$.
original slope $=-1 / 3$
perpendicular slope $=3$
point-slope form: $y-(-2)=3(x-2)$
slope-intercept form: $y=3 x-8$
b. Find the Intersection between $x+3 y=6$ and $y=3 x-8$.
$x+3(3 x-8)=6 ; x=3$
$y=3(3)-8=1$
The lines intersect at $(3,1)$.
c. Find the distance between $(2,-2)$ and $(3,1)$.

$$
d=\sqrt{(3-2)^{2}+(1-(-2))^{2}}=\sqrt{10}
$$

10. Draw $\overline{A C}$ to divide $A B C D$.
area of $A B C D=$ area of $\triangle A B C+$ area of $\triangle A D C$

$$
=(4)(2) / 2+(4)(4) / 2=12
$$

11.

You can tell from the graph that it is not a rhombus. It looks like a parallelogram or a rectangle. Check the slopes of the sides.
slope of $\overline{E F}=\frac{0-2}{2-(-2)}=-\frac{1}{2}$
slope of $\overline{F G}=\frac{-2-0}{1-2}=2$
slope of $\overline{G H}=\frac{0-(-2)}{-3-1}=-\frac{1}{2}$
slope of $\overline{E H}=\frac{0-2}{-3-(-2)}=2$
The product of the slopes of adjacent sides is -1 .
Adjacent sides are perpendicular, so it is a rectangle.
12. center: $(3,2)$, radius $=3$

So, the equation is $(x-3)^{2}+(y-2)^{2}=9$.
13. $\pi r^{2}=25 \pi ; r=5$

So, the equation is $(x-2)^{2}+(y+6)^{2}=25$.
14. $r=$ distance between $(5,1)$ and $(3,7)$

$$
=\sqrt{(3-5)^{2}+(7-1)^{2}}=\sqrt{40}
$$

So, the equation is $(x-5)^{2}+(y-1)^{2}=40$.
15. $x^{2}+4 x+y^{2}=5$
$x^{2}+4 x+4+y^{2}=5+4$
$(x+2)^{2}+y^{2}=9$
So, the circle has center $(-2,0)$ and radius 3 .
16. The preimage has center $(0,-5)$ and radius 2 .

The image has center $(0,5)$ and radius 2 .
So, the equation is $x^{2}+(y-5)^{2}=4$.
17. A, D, E, F
18. $C P=$ radius $=$ distance between $(1,3)$ and $(2,0)$
$=\sqrt{(2-1)^{2}+(0-3)^{2}}=\sqrt{10}$
$C Q=$ distance between $(1,3)$ and $(-1,5)$
$=\sqrt{(-1-1)^{2}+(5-3)^{2}}=\sqrt{8}$
$C Q$ is less than the radius, Q is inside the circle.
19. $P(x, x), Q(x,-x), R(-x,-x), S(-x, x)$
20. $P R=\sqrt{(-x-x)^{2}+(-x-x)^{2}}=\sqrt{8} x$
$S Q=\sqrt{(x-(-x))^{2}+(-x-x)^{2}}=\sqrt{8} x$
$P R=S Q$, so the diagonals of a square are congruent.
21.

The circumcenter of a right triangle is the midpoint of the hypotenuse, so the circumcenter is at $(3,2)$.
22.

A centroid divides a median in the ratio 2:1.

Th point $(0,-1)$ divides median $\overline{P S}$ in the ratio 2:1, so the centroid is at $(0,-1)$.
23.

The circumcircle has center $(2,2)$ and radius $2 \sqrt{2}$, so the standard equation is $(x-2)^{2}+(y-2)^{2}=8$.

