LESSON 172

1. $\quad P($ multiple of 3$)=P(3,6$ or 9$)=3 / 10$
2. $\quad P$ (hit) $=15 / 25=3 / 5$
3. The complement of "at least one heads" is "no heads." 8 possible outcomes: HHH, HHT, HTH, HTT,

THH, THT, TTH, TTT
$P($ no heads $)=P($ all tails $)=P(T T T)=1 / 8$
$P($ at least one heads $)=1-P($ no heads $)=1-1 / 8=7 / 8$
4. $\quad P$ (correct) $\times P$ (correct) $\times P$ (correct) $\times P$ (correct)
$=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}$
5. P (clear) $\times P$ (clear)
$=\frac{6}{10} \times \frac{6}{10}=\frac{9}{25}$
6. $6 \times 6=36$ possible outcomes

6 favorable outcomes: 11, 22, 33, ..., 66
$P($ same numbers $)=6 / 36=1 / 6$
7. $\quad P$ (clear) $\times P$ (clear \mid clear $)$
$=\frac{6}{10} \times \frac{5}{9}=\frac{1}{3}$
8. $\quad P$ (club) $\times P$ (club \mid club $)$
$=\frac{13}{52} \times \frac{12}{51}=\frac{1}{17}$
9. P (heart) $+P$ (face) $-P$ (heart and face)
$=\frac{13}{52}+\frac{12}{52}-\frac{3}{52}=\frac{11}{26}$
10. swimming only $=22-7=15$
rock climbing only $=19-7=12$
swimming only or rock climbing only $=15+12=27$
P (swimming only or rock climbing only) $=27 / 40$
11. $P($ vanilla \mid mint $)=($ vanilla and $\operatorname{mint}) /$ mint

$$
=10 /(10+15)=2 / 5
$$

12. P (coffee) $=26 / 40=13 / 20$
13. P (tea \mid male $)=($ tea and male $) /$ male $=6 / 18=1 / 3$
14. $P($ red $)=$ red $/($ green + yellow + red $)$

$$
=80 /(50+10+80)=4 / 7
$$

15. entire area $=$ circle with radius $9=\pi(9)^{2}=81 \pi$ favorable area
$=$ circle with radius $6-$ circle with radius 3
$=36 \pi-9 \pi=27 \pi$
$P($ shaded region $)=\frac{\text { favorable area }}{\text { entire area }}=\frac{27 \pi}{81 \pi}=\frac{1}{3}$
16. 4 possible outcomes: $\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}$
possible values of $X: 0,1,2$
$P(0)=P($ no heads $)=P(\mathrm{TT})=1 / 4$
$P(1)=P($ one heads $)=P($ HT or $T H)=1 / 2$
$P(2)=P($ two heads $)=P(H H)=1 / 4$
$E(X)=0 \times P(0)+1 \times P(1)+2 \times P(2)$
$=0(1 / 4)+1(1 / 2)+2(1 / 4)=1$
So, the expected value is 1 .
17. Find the number of permutations of 5 .
$P(5,5)=\frac{5!}{(5-5)!}=\frac{5!}{0!}=\frac{5!}{1}=5 \times 4 \times 3 \times 2 \times 1=120$
18. Find the number of permutations of 4 out of 6 .
$P(6,4)=\frac{6!}{(6-4)!}=\frac{6!}{2!}=6 \times 5 \times 4 \times 3=360$
19. Find the number of combinations of 3 out of 12 .
$C(12,3)=\frac{12!}{(12-3)!3!}=\frac{12!}{9!3!}=\frac{12 \times 11 \times 10}{3 \times 2 \times 1}=220$
20. Two points determine a line. Because order does not matter, the number of lines is the number of combinations of 2 out of 10 .
$C(10,2)=\frac{10!}{(10-2)!2!}=\frac{10!}{8!2!}=\frac{10 \times 9}{2 \times 1}=45$
21. possible outcomes $=P(5,5)$
favorable outcomes $=$ permutations of 4 remaining letters after placing 5 first $=P(4,4)$
probability $=\frac{P(4,4)}{P(5,5)}=\frac{4!}{5!}=\frac{1}{5}$
22. possible outcomes $=C(10,2)$
favorable outcomes = combinations of choosing 2 teens out of $4=C(4,2)$
probability $=\frac{C(4,2)}{C(10,2)}=\frac{6}{45}=\frac{2}{15}$
23. Emma and Brian must sit next to each other, so group them together and treat them as one person.
possible outcomes $=P(8,8)$
favorable outcomes $=$ permutations of 7 people with Emma-Brian + permutations of 7 people with BrianEmma $=P(7,7)+P(7,7)=P(7,7) \times 2$
probability $=\frac{P(7,7) \times 2}{P(8,8)}=\frac{7!\times 2}{8!}=\frac{1}{4}$
24. The vowels should be placed second and fourth. possible outcomes $=P(5,5)$
favorable outcomes $=$ permutations of 3 consonants with A second and E fourth + permutations of 3 consonants with E second and A fourth $=P(3,3) \times 2$
probability $=\frac{P(3,3) \times 2}{P(5,5)}=\frac{3!\times 2}{5!}=\frac{1}{10}$
You could use the counting principle.
possible outcomes $=5 \times 4 \times 3 \times 2 \times 1=120$
favorable outcomes $=3 \times 2 \times 2 \times 1 \times 1=12$
1st place: 3 consonants
2nd place: 2 vowels
3rd place: 3-1=2 consonants
4th place: 2-1 = 1 vowel
5th place: 3-2 = 1 consonant
probability $=12 / 120=1 / 10$
