LESSON 174

1. Tangent segments to a circle from a point are \cong.
$A D=A F=10$
$B E=B D=15$
$=A B+B C+A C$
$C E=C F=9$
$=25+24+19=68$
2. Congruent chords are equidistant from the center.
$x=6 / 2=3$
A radius perpendicular to a chord bisects the chord.
base of right $\Delta=8 / 2=4$
Use the Pythagorean Theorem or the 3-4-5
Pythagorean triple to find $y=5$.
3. An inscribed angle measures half its intercepted arc.
$m \angle 1=118 / 2=59^{\circ}$
A chord-chord angle measures half the sum of the intercepted arcs.
$m \angle 2=(86+118) / 2=102^{\circ}$
4. An angle inscribed in a semicircle is a right angle.
$m \angle 1=90^{\circ}$
An inscribed angle measures half its intercepted arc. $m \angle 2=60 / 2=30^{\circ}$

Angles in a triangle add up to 180°.
$m \angle 3=180-m \angle 1-m \angle 2=60^{\circ}$
5. The product of the secant segment and its external part is equal to the square of the tangent segment.
$x^{2}=15(15+10+7) ; x=4 \sqrt{30}$
The product of the segments of one chord equals the product of the segments of the other chord.
$14 y=7(10) ; y=5$
6.

An equilateral triangle can be divided into two congruent 30-60-90 triangles. Use a 30-60-90 triangle to find that the height is $2 \sqrt{3}$.
area $=\frac{1}{2} b h=\frac{1}{2}(4)(2 \sqrt{3})=4 \sqrt{3}$
7.

A regular hexagon is made up of 6 equilateral triangles. The apothem is the height of each equilateral triangle. Use a 30-60-90 triangle to find that the apothem is $3 \sqrt{3}$.

$$
\text { area }=\frac{1}{2} s a \cdot n=\frac{1}{2}(6)(3 \sqrt{3})(6)=54 \sqrt{3}
$$

8. arc length $=\frac{\theta}{360} \cdot 2 \pi r=\frac{150}{360} \cdot 2 \pi(12)=10 \pi$
area $=\frac{\theta}{360} \cdot \pi r^{2}=\frac{150}{360} \cdot \pi(12)^{2}=60 \pi$
9.

An angle inscribed in a semicircle is a right angle, so $m \angle 1=90^{\circ}$. An inscribed angle measures half its intercepted arc, so $m \angle 2=$ $60 / 2=30^{\circ}$. So, the triangle is a 30-60-90 triangle with hypotenuse 20 and legs 10 and $10 \sqrt{3}$.
area $=$ semicircle - triangle

$$
=\frac{1}{2} \pi(10)^{2}-\frac{1}{2}(10)(10 \sqrt{3})=50 \pi-50 \sqrt{3}
$$

10. $S A=2 \pi r^{2}+2 \pi r h=2 \pi(5)^{2}+2 \pi(5)(6)=110 \pi$
$V=\pi r^{2} h=\pi(5)^{2}(6)=150 \pi$
11.

The solid is a cone with a hemisphere on top. The hemisphere has radius 6 . The cone has radius 6 and height 8 .
12. Use the Pythagorean Theorem or a multiple of the 3-45 Pythagorean triple to find that the slant height of the cone is 10.
$S A=$ hemisphere $L A+$ cone $L A$

$$
=\frac{1}{2} \cdot 4 \pi r^{2}+\pi r l=\frac{1}{2} \cdot 4 \pi(6)^{2}+\pi(6)(10)=132 \pi
$$

$V=$ hemisphere $V+$ cone V

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{4}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{2} \cdot \frac{4}{3} \pi(6)^{3}+\frac{1}{3} \pi(6)^{2}(8)=144 \pi+96 \pi=240 \pi
\end{aligned}
$$

13. area ratio $=48 / 27=16 / 9=4^{2} / 3^{2}$
height ratio $=$ side ratio $=4 / 3$
volume ratio $=4^{3} / 3^{3}=64 / 27$
14. $\operatorname{tank} V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(12)^{3}=2304 \pi$

$$
\approx 2304(22 / 7) \approx 7241
$$

time $=$ volume $/$ rate $\approx 7241 / 50 \approx 145$
So, it will take about 145 minutes.
15. cylinder $V=\pi r^{2} h=\pi(2)^{2}(2)=8 \pi$

$$
\approx 8(22 / 7) \approx 25.1
$$

density $=$ mass/volume $\approx 227 / 25.1 \approx 9$
So, the density is about 9 pounds per cubic foot.
16. population density $=$ people/land area

$$
=504,000 / 60=8400
$$

So, the population density is 8,400 people/mile ${ }^{2}$.
17. center $=$ midpoint between $(-5,2)$ and $(3,-2)$

$$
=\left(\frac{-5+3}{2}, \frac{2-2}{2}\right)=(-1,0)
$$

radius $=$ distance between $(-1,0)$ and $(3,-2)$

$$
=\sqrt{(3-(-1))^{2}+(-2-0)^{2}}=\sqrt{20}
$$

So, the equation is $(x+1)^{2}+y^{2}=20$.
18. You need to move right and up to find P.
x-length of $\overline{A B}=8-(-7)=15$
x of $P=x$ of $A+(3 / 5)(x$-length $)=-7+(3 / 5) 15=2$
y-length of $\overline{A B}=4-(-1)=5$
y of $P=y$ of $A+(3 / 5)(y$-length $)=-1+(3 / 5) 5=2$
So, P is at $(2,2)$.
19. Find a line perpendicular to $\overline{A B}$ and passing through the midpoint of $\overline{A B}$.
slope of $\overline{A B}=1 / 3$
midpoint of $\overline{A B}=(2,2)$
perpendicular slope $=-3$
point-slope form: $y-2=-3(x-2)$
slope-intercept form: $y=-3 x+8$
20. You can tell from the graph that it is not a rhombus. It looks like a parallelogram or a rectangle. Check the slopes of the sides. By the slope formula,
slope of $\overline{A B}=3 / 2 \quad$ slope of $\overline{B C}=-3 / 5$
slope of $\overline{C D}=3 / 2 \quad$ slope of $\overline{A D}=-3 / 5$
Opposite sides are parallel, but adjacent sides are not perpendicular. So, it is a parallelogram but not a rectangle.

21 ~ 22. Use your ruler and protractor to check the accuracy of your construction.
23. Use the complement rule.
$P($ sum is 5$)=P(14,23,32$, or 41$)=4 / 36=1 / 9$
$P($ sum is not 5$)=1-P($ sum is 5$)=1-1 / 9=8 / 9$
24. Let $x=$ number of students who speak both.

Spanish only + French only + both + neither $=30$
$(17-x)+(14-x)+x+4=30 ; x=5$
$P($ both $)=5 / 30=1 / 6$
25. entire area $=$ rectangle $=10(10)=100$
favorable area $=$ circle $=\pi(5)^{2}=25 \pi$
$P($ shaded region $)=\frac{\text { favorable area }}{\text { entire area }}=\frac{25 \pi}{100}=\frac{\pi}{4}$
26. Order does not matter, so find the number of combinations of 3 out of 8 .
$C(8,3)=\frac{8!}{(8-3)!3!}=\frac{8!}{5!3!}=\frac{8 \times 7 \times 6}{3 \times 2 \times 1}=56$
27.

The area of the rhombus is half the area of the rectangle, so the probability is $1 / 2$.

