LESSON 180

1. A (alternate interior angles)
B (corresponding angles)
2. C
3. B
4. A, B, D

Counterexamples may vary. Sample(s):
A) The statement is false when $a=1, b=2, c=0$.
B) A 45-45-90 triangle and a 60-60-60 triangle are not similar because their angles are not congruent.
D) Side lengths 1, 1, and 5 cannot form a triangle.
5. $m \angle A E B=180-90-52=38^{\circ}(\triangle$ angle sum $=180)$ $m \angle A D C=m \angle A E B=38^{\circ}$ (corresponding angles) $m \angle 1=180-m \angle A D C=142^{\circ}$ (supplementary angles)
6.

The diagonals of a kite are perpendicular. Use the Pythagorean Theorem or the 3-4-5 Pythagorean triple to find that the length of the vertical diagonal is $3+3=6$.
area $=\frac{1}{2} d_{1} d_{2}=\frac{1}{2}(4+6)(3+3)=30$ units 2
7.

Use any point in Q4. The reflection maps A to B, the rotation maps B to C, and the dilation maps C to D.
So, the resulting image is in Quadrant 2.
8. D; An orthocenter is the point where the altitudes of a triangle intersect.
9. 3. If lines are parallel, then alternate interior angles are congruent.
4. Reflexive Property
5. ASA
10. Use the Three Parallel Lines Theorem [69.2].

$$
\frac{8}{6 x}=\frac{5 x}{15} \quad \rightarrow \quad(6 x)(5 x)=8(15) \quad \rightarrow \quad x=2
$$

11. C
12. B, D, F
13. A radius perpendicular to a chord bisects the chord, so the base of the right triangle is $20 / 2=10$.
Let r be the radius of the circle. The right triangle has base 10, height 5 , and hypotenuse r. By the Pythagorean Theorem,
$r^{2}=5^{2}+10^{2}$
$r=\sqrt{125}=5 \sqrt{5}$
So, the radius of the circle is $5 \sqrt{5}$ inches.
14. D
15. An intercepted arc measures twice its inscribed angle.
$m \widehat{A C}=2 m \angle B=50^{\circ}$
An arc measure equals the measure of its central angle.
$m \angle A P C=m \widehat{A C}=50^{\circ}$
Sector $A P C$ has radius 18 and angle 50°.
area $=\frac{\theta}{360} \cdot \pi r^{2}=\frac{50}{360} \cdot \pi(18)^{2}=45 \pi$
16. x° and y° are complementary. The cosine of an acute angle is equal to the sine of its complement.
$\cos y^{\circ}=\sin x^{\circ}=5 / 13$
17. The circle has center $(1,4)$ and radius $\sqrt{5}$. By the distance formula,
distance between $(1,4)$ and $(-1,2)$
$=\sqrt{(-1-1)^{2}+(2-4)^{2}}=\sqrt{8}$
The distance is greater than the radius $(\sqrt{8}>\sqrt{5})$, so the point is outside the circle.
18. Parallel lines have the same slope.
original slope $=4$
parallel slope $=4$
point-slope form: $y-1=4(x+1)$
slope-intercept form: $y=4 x+5$
19. Use the Secant-Secant Product Theorem [99.2].
$8(8+x)=7(7+x+3)$
$64+8 x=7 x+70$
$x=6$
20. The diagonals of a parallelogram bisect each other.
$4 x=8$
$x=2$$\quad \begin{aligned} & 10-x=5 y-2 \\ & 10-2=5 y-2 \\ & \\ & \end{aligned}$
21. P is the centroid and divides $\overline{B D}$ in the ratio $2: 1$.
$P D=B P / 2=8 / 2=4$
$B D=B P+P D=8+4=12$
22.

The solid is an upside-down cone with radius 12 and height 5.
volume $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(12)^{2}(5)=240 \pi$
23. Use the Pythagorean inequality theorems.
A is a right triangle because $5^{2}=3^{2}+4^{2}$.
B is an acute triangle because $6^{2}<4^{2}+5^{2}$.
C is a right triangle because $13^{2}=5^{2}+12^{2}$.
D is an obtuse triangle because $15^{2}>8^{2}+2^{2}$.
So, the answer is B.
24. C, E, F
25. You need to move right and up to find P.
x-length of $\overline{A B}=8-(-2)=10$
x of $P=x$ of $A+(3 / 5)(x$-length $)=-2+(3 / 5) 10=4$
y-length of $\overline{A B}=5-0=5$
y of $P=y$ of $A+(3 / 5)(y$-length $)=0+(3 / 5) 5=3$
So, P is at $(4,3)$.
26. The preimage has center $(2,-7)$ and radius 5 .

The image has center $(2,7)$ and radius 5.
So, the equation is $(x-2)^{2}+(y-7)^{2}=25$.
27. Use the complement rule.
$P($ sum is 3$)=P(12$ or 21$)=2 / 36=1 / 18$
$P($ sum is not 3$)=1-P($ sum is 3$)=1-1 / 18=17 / 18$
28. $10 \times 9 \times 8=720$ ways
29. By the slope formula,
slope of $\overline{A B}=-2 \quad$ slope of $\overline{B C}=1 / 2$
slope of $\overline{C D}=-2 \quad$ slope of $\overline{A D}=1 / 2$
By the Pythagorean Theorem or the distance formula,
length of $\overline{A B}=2 \sqrt{5} \quad$ length of $\overline{A B}=2 \sqrt{5}$
length of $\overline{C D}=2 \sqrt{5} \quad$ length of $\overline{C D}=2 \sqrt{5}$
Adjacent sides are perpendicular (the product of the slopes of adjacent sides is -1), so it is a rectangle. All sides are congruent, so it is a rhombus. A quadrilateral that is a rectangle and a rhombus is a square.
The answer is A .
30. tank surface area $=4 \pi r^{2}=4 \pi(15)^{2}=900 \pi$

$$
\approx 900(22 / 7) \approx 2829 \mathrm{ft}^{2}
$$

number of cans $\approx 2829 / 180 \approx 16$
So, about 16 cans will be needed.
31. population density = people/land area
$979=x / 11787$
$x=11,539,473 \approx 11,539,000$
So, the population is about $11,539,000$ people.
32. Let x be the number of students who play neither. soccer only + baseball only + both + neither $=50$
$(30-14)+(22-14)+14+x=50$
$x=12$
So, P (neither) $=12 / 50=6 / 25$.

33 ~ 34. Diagrams are not drawn to scale.
33. $\frac{15}{15+10}=\frac{6}{x}$
$15 x=6(15+10)$
$x=10$

The street lamp is 10 feet tall.
34. $\theta=35^{\circ}$
$\tan 35^{\circ}=60 / x$
$x=60 / \tan 35^{\circ} \approx 85.7$
The boat is about 85.7 ft away from the lighthouse.

35. entire area $=$ circle with radius $12=\pi(12)^{2}=144 \pi$
favorable area
$=$ circle with radius $6-$ circle with radius 3
$=36 \pi-9 \pi=27 \pi$
$P($ shaded region $)=\frac{\text { favorable area }}{\text { entire area }}=\frac{27 \pi}{144 \pi}=\frac{3}{16}$

