This is a practice test for your midterm exam. It is usually a good practice to take a practice test just like a real exam. Read the directions in Lesson 90. When you are ready, begin the test.

- **1.** Select all statements that are true.
 - A) A line has two endpoints.
 - B) Any four points are coplanar.
 - C) Parallel lines never intersect.
 - D) Every angle has a complement.
 - E) All isosceles triangles are equilateral.
 - F) A right triangle has two acute angles.
- 2. What value of *x* makes lines *l* and *m* parallel?

- 3. If x + y = 8 and x = 5, then 5 + y = 8.Which property justifies this statement?
 - A) Addition Property of Equality
 - B) Reflexive Property of Equality
 - C) Transitive Property of Equality
 - D) Substitution Property of Equality
- **4.** What is the measure of one interior angle in a regular pentagon?

- 5. △ABC is reflected across the *x*-axis and then dilated about the origin by a scale factor of 2 to create △DEF. Which statement is true? Select all that apply.
 - A) $\triangle ABC \cong \triangle DEF$
 - B) $\triangle ABC \sim \triangle DEF$
 - C) AB = 2DE
 - D) $\angle C \cong \angle F$
- 6. \overrightarrow{BP} is the bisector of $\angle ABC$. What is the measure of $\angle ABC$ if $m \angle ABP = (3x + 7)^{\circ}$ and $m \angle PBC = (5x 9)^{\circ}$?
- Point P(3, -4) is translated by the rule (x, y) → (x 1, y + 5) and then reflected across the line y = x. What is the final image of P?
- **8**. Which quadrilateral is <u>not</u> a parallelogram?

9. Give reasons for Steps 2 and 4 to complete the proof.

$\underline{\text{Given}}: AC = BD$ $\underline{\text{Prove}}: AB = CD$	A B C D
STATEMENTS	REASONS
1. AC = BD	1. Given
2. AC = AB + BC $BD = BC + CD$	2.
3. AB + BC $= BC + CD$	3. Substitution property
4. AB = CD	4.

- **10.** Which congruence criteria can be used most directly to prove $\triangle ABD \cong \triangle ACD$?
 - A) SSS
 - B) SAS C) ASA D) HL $B \longrightarrow D$ C
- Find the values of x and y that make the triangles similar.

12. A triangle has sides of lengths 5 and 9. How long can the third side be? Write an inequality that describes the possible lengths of the third side. **13.** $\triangle PQR$ is formed by connecting the midpoints of the sides of $\triangle ABC$. What is the relationship between the perimeter of $\triangle ABC$ and the perimeter of $\triangle PQR$?

14. Which transformation(s) map $\triangle ABC$ onto $\triangle DEF$? Select all that apply.

- A) a reflection over the *y*-axis followed by a translation of 4 units down
- B) a reflection over the *x*-axis followed by a reflection over the *y*-axis
- C) a counterclockwise rotation of 180° about the origin
- D) a clockwise rotation of 180° about the origin
- **15.** In the diagram, $\triangle DEF \cong \triangle DGH$. What is the measure of $\angle 1$?

16. If $2x + 1 \neq 7$, then $x \neq 3$.

Order the steps to prove this statement using indirect proof.

- A) Therefore, our assumption is wrong and $x \neq 3$.
- B) Then 2x + 1 = 2(3) + 1 = 7.
- C) Assume that x = 3.
- D) This contradicts the given statement that $2x + 1 \neq 7$.
- 17. An isosceles triangle has base angles measuring $2x^{\circ}$ and $(5x - 45)^{\circ}$. What is the measure of the vertex angle of the triangle?
- Find the measures of ∠1 and ∠2 if the quadrilateral is a kite.

19. Which equation <u>cannot</u> be used to find the value of *x*?

A)
$$\sin 52^\circ = \frac{x}{13}$$
 B) $\tan 52^\circ = \frac{x}{7}$
C) $\cos 38^\circ = \frac{13}{x}$ D) $\tan 38^\circ = \frac{7}{x}$

20. *D* and *E* are midpoints of sides of $\triangle ABC$. Name all altitudes and the orthocenter of $\triangle ABC$.

21. Give reasons for Steps 2 through 4 to complete the proof.

 $\frac{\text{Given: } T \text{ bisects}}{PR \& \overline{QS}.}$ $\underline{Prove: } \angle P \cong \angle R$

STATEMENTS	REASONS
1. T bisects $\overline{PR} \& \overline{QS}$.	1. Given
2. $\overline{PT} \cong \overline{RT}, \ \overline{QT} \cong \overline{ST}$	2.
3. $\angle PTQ \cong \angle RTS$	3.
4. $\triangle PQT \cong \triangle RST$	4.
5. $\angle P \cong \angle R$	5. CPCTC

22. Which triangle is similar to this triangle? Select all that apply.

- A) a triangle with one angle 60°
- B) a triangle with sides 1, $\sqrt{3}$, and 2
- C) a right triangle with one angle 30°
- D) a right triangle with hypotenuse 4

23. In $\triangle ABC$, \overline{AD} and \overline{CE} are medians. Find AD and AT if TD = 6.

24. Find the value of *x* in simplest radical form.

25. Find the values of the variables in simplest radical form.

26. Quadrilateral *EFGH* is an isosceles trapezoid with bases \overline{EF} and \overline{HG} . Which statement is <u>not</u> true?

A) $\overline{EF} \parallel \overline{HG}$	B) $\overline{EH} \cong \overline{FG}$
C) $\overline{EG} \perp \overline{FH}$	D) $\overline{EG} \cong \overline{FH}$

- **27.** $\triangle ABC$ is a right triangle with $m \angle A = 90^{\circ}$, $m \angle B = 2x^{\circ}$, and $m \angle C = (3x 10)^{\circ}$. Which statement is true? Select all that apply.
 - A) AC > AB
 - B) AB + AC < BC
 - C) The shortest side is \overline{AB} .
 - D) The longest side is \overline{BC} .
 - E) The smallest angle is $\angle B$.
- 28. Two consecutive angles in a parallelogram measure x° and 5x°. What are the measures of the four angles of the parallelogram?
- **29.** Eli is 1.6 meters tall and casts a shadow that is 2.4 meters long. A tree next to him casts a shadow 12 meters long. How tall is the tree?
- 30. A lighthouse is 80 ft above the surface of the water. The angle of depression from the top of a lighthouse to a ship is 35°. How far is the ship from the lighthouse?

STOP

This is the end of the test. Review your answers before grading.