			of		
Steps of the	Scientific Me	thod:			
1. Making		that lead to a	·		
2. Forming a		to answer t			
3. Testing th	e	by			
4. Making a		based on the res	ults of the		
Definitions:					
		and	in the lab to		
		esed onand		prior	
Observation	s vs. Conclus	ions:			
1	2	3	4		
5	6	7	8		
		Observations:			
Quanti	tative	Qualitative			
Include	s		Does	include	
and	_			and units.	

Qualitative vs. Qua	antitativ	re:				
1 2	2		3		_ 4	
5 6)		_ 7. <u></u>		_ 8	
Hypothesis: an						
A good hypothesis	5 :					
1	an _					
2. can be		_				
3. will		_ an			_	
Practice forming a	hypoth	esis:				
1. What is the		_ of th	e			?
2. As the candle			_, it gets			Where does
the		_ go?				
Experiment:						
1. is	to			a		
2. involves		_				
3. is performed unde	er					
Variables: factors t	hat can b	ре			_·	
Control: a		that	ic hold			

Lesson 4: Scientific Method (cont.)

Chemistry with Lab

In	a good experiment:					
1.	only				_ are allowed to	
	the	(or			_)	_ is
	changed by the					
3.	the	(or			_)	_
	changes as a result of the					
4.	all other	are _			because they are held	
	·					
Th	ne Chemistry Quiz:					
1.	2 3		4	5		