

LESSON 122

1. $3\sqrt{3}$ 2. $2x^2$ 3. -4 4. $3 - \sqrt{7}$
 5. B 6. $x = 4$ 7. $x = 13$
 8. $f(x) = \sqrt{x+2} + 1$ 9. C 10. 5 feet

Worked-out solutions:

1. $\sqrt{27} = \sqrt{9 \cdot 3} = \sqrt{9} \cdot \sqrt{3} = 3\sqrt{3}$

2. $\sqrt[3]{8x^6} = \sqrt[3]{8 \cdot (x^2)^3} = \sqrt[3]{8} \cdot \sqrt[3]{(x^2)^3} = 2x^2$

3. $\sqrt{2} \cdot \sqrt{8} - 2\sqrt{18} + \sqrt{50}$
 $= \sqrt{16} - 6\sqrt{2} + 5\sqrt{2} = 4 - \sqrt{2}$
 $ab = (4)(-1) = -4$

4. $\frac{2}{3 + \sqrt{7}} = \frac{2}{3 + \sqrt{7}} \cdot \frac{3 - \sqrt{7}}{3 - \sqrt{7}} = \frac{2(3 - \sqrt{7})}{9 - 7} = 3 - \sqrt{7}$

5. A) $4^{3/2} = (2^2)^{3/2} = 2^3 = 8$
 B) $9^{3/2} = (3^2)^{3/2} = 3^3 = 27$
 C) $16^{3/4} = (2^4)^{3/4} = 2^3 = 8$
 D) $64^{2/3} = (4^3)^{2/3} = 4^2 = 16$

6. $\sqrt{8 - x} = x - 2$
 $8 - x = (x - 2)^2$ Square both sides.
 $x^2 - 3x - 4 = 0$ Write in standard form.
 $(x + 1)(x - 4) = 0$ Solve for x .
 $x = -1, x = 4$
 $x = -1$ is extraneous, so the solution is $x = 4$.

7. $(x - 5)^{1/3} - 2 = 0$
 $(x - 5)^{1/3} = 2$ Isolate the power.
 $[(x - 5)^{1/3}]^3 = 2^3$ Cube both sides.
 $x - 5 = 8$ Simplify.
 $x = 13$ Solve for x .

8. $y = \sqrt{x}$ Parent function
 $y = \sqrt{x+2}$ Shift left 2 units.
 $f(x) = \sqrt{x+2} + 1$ Shift up 1 unit.

9. The graph involves a reflection of $y = \sqrt[3]{x}$ over either the x - or y -axis, so eliminate A and B.
 $(0, 1)$ is on the graph, so choose C.

10. The ladder, wall, and ground form a right triangle.
 Hypotenuse = 13, Legs = 12 and x
 By The Pythagorean Theorem, $12^2 + x^2 = 13^2$.
 Solve for x , and you get $x = 5$.
 The bottom is 5 feet from the wall.