

LESSON 164

1. $(9 - 1) \div 2^2 \times (-2)^4$
 $= 8 \div 2^2 \times (-2)^4$ Parentheses
 $= 8 \div 4 \times 16$ Exponents
 $= 2 \times 16$ Division
 $= 32$ Multiplication

2. $4x - 1 = 7$
 $4x = 8$ Add 1 to both sides.
 $x = 2$ Divide both sides by 4.
 $2x + 5 = 2(2) + 5 = 9$

3. $\frac{1}{2}x - \frac{1}{3} = \frac{2}{3}x + \frac{1}{6}$
 $3x - 2 = 4x + 1$ Multiply both sides by 6.
 $-x - 2 = 1$ Subtract $4x$ from both sides.
 $-x = 3$ Add 2 to both sides.
 $x = -3$ Divide both sides by -1 .

4. The answer is D.
A) $x = 3$ B) $x = 1$
C) $x = 1$ D) $0 = 2$

5. The answer is B.
 $5x - 4 \geq 1$ and $2x + 1 < 5$
 $5x \geq 5$ $2x < 4$
 $x \geq 1$ $x < 2$
The solution set is $1 \leq x < 2$.

6. The answer is C.
 $4x + 1 < -7$ or $-2x + 3 \geq 1$
 $4x < -8$ $-2x \geq -2$
 $x < -2$ $x \leq 1$
The solution set is $x \leq 1$.

7. $|x - 3| + 2 = 7$
 $|x - 3| = 5$ Isolate the absolute value.
 $x - 3 = 5$ or $x - 3 = -5$ Rewrite as two equations.
 $x = 8, x = -2$ Solve each equation.
The sum is $8 + (-2) = 6$.

8. The answer is B.
The inequality B has no solutions because an absolute value can never be negative.

9. Let x = first even integer
 $x + 2$ = second even integer
 $x + 4$ = third even integer
Sum = 24, so $x + (x + 2) + (x + 4) = 24$.
Solve for x , and you get $x = 6$.
The integers are 6, 8, and 10.

10. Let x = number of quarters

$x - 3$ = number of dimes
 $0.25x$ = value of quarters
 $0.10(x - 3)$ = value of dimes
Total value = 2.50, so $0.25x + 0.10(x - 3) = 2.50$.
Solve for x , and you get $x = 8$.
Emma has 8 quarters.

11. Plug the points into the slope formula.

$$\text{slope } m = \frac{1 - (-3)}{1 - 0} = 4$$

12. $m = \frac{2 - 0}{0 - 3} = -\frac{2}{3}$ Find the slope using any two points like (3, 0) and (0, 2).

$b = 2$ $(0, 2)$ is the y -intercept.
 $y = mx + b$ Slope-intercept form
 $y = -\frac{2}{3}x + 2$ Plug in m and b .

$3y = -2x + 6$ Multiply both sides by 3.
 $2x + 3y = 6$ Add $2x$ to both sides.

13. The answer is B.

The slope must be 2 because parallel lines have the same slope, so eliminates C and D.

(2, 0) is on the line, so choose B.

14. The answer is C.

The line is dashed, so eliminate B and D.
 $(0, 1)$ is a solution, so choose C.

16. The initial amount is 200 and the rate of change is -8 , so the equation is $y = -8x + 200$.

17. The cost of adult tickets is $7x$ and the cost of child tickets is $5y$, so the expression is $7x + 5y$.

18. The answer is B.

The expression for the total cost is $6x + 7$.
Chris can spend \$50, so choose B.

19. $|2x - 3| \leq 5$

$-5 \leq 2x - 3 \leq 5$ Write a compound inequality.
 $-2 \leq 2x \leq 8$ Add 3 to all sides.
 $-1 \leq x \leq 4$ Divide all sides by 2.
 $5 \leq x + 6 \leq 10$ Add 6 to all sides.

20. Parallel lines never intersect and have the same slope, so the line has the same slope as the given line.

The line has slope -4 and y -intercept 4 , so its equation is $y = -4x + 4$.

This line passes through Quadrants I, II, and IV.