

LESSON 167

- The answer is A.
 - 1 is real but not irrational.
 - $\sqrt{2} + (-\sqrt{2}) = 0$ is rational.
 - $(\sqrt{2})(\sqrt{2}) = 2$ is rational.
- $$\begin{aligned} i^3 + i^4 + i^5 + i^6 \\ = i^2 \cdot i + (i^2)^2 + (i^2)^2 \cdot i + (i^2)^3 \\ = (-1) \cdot i + (-1)^2 + (-1)^2 \cdot i + (-1)^3 \\ = -i + 1 + i - 1 \\ = 0 \end{aligned}$$
- $$\begin{aligned} (3 - i)(2 + 5i) + 4i \\ = 6 + 15i - 2i - 5i^2 + 4i \\ = 6 + 15i - 2i - 5(-1) + 4i \\ = 6 + 15i - 2i + 5 + 4i \\ = 11 + 17i \end{aligned}$$
- $$\begin{aligned} (x - 1)(3x - 2) = 0 \\ x - 1 = 0 \text{ or } 3x - 2 = 0 \quad \text{Zero-product property} \\ x = 1, x = 2/3 \quad \text{Solve for } x. \end{aligned}$$
- $$\begin{aligned} 3x^2 + 8x - 3 = 0 \\ (3x - 1)(x + 3) = 0 \quad \text{Factor the quadratic.} \\ 3x - 1 = 0 \text{ or } x + 3 = 0 \quad \text{Zero-product property} \\ x = 1/3, x = -3 \quad \text{Solve for } x. \end{aligned}$$

$k = -3$ because $k < 0$.
 $3k + 1 = 3(-3) + 1 = -8$
- $$\begin{aligned} 2x^2 + 6x + 5 = 0 \\ x = \frac{-6 \pm \sqrt{-4}}{2(2)} \quad \text{Quadratic formula} \\ x = \frac{-6 \pm 2i}{4} \quad \text{Simplify.} \\ x = -\frac{3}{2} \pm \frac{1}{2}i \end{aligned}$$

$a + b = -\frac{3}{2} + \frac{1}{2} = -1$
- The discriminant, $b^2 - 4ac$, must be negative.

$$\begin{aligned} 6^2 - 4(3)k < 0 \quad \text{Set discriminant} < 0 \\ 36 - 12k < 0 \quad \text{Solve for } k. \\ k > 3 \end{aligned}$$
- $$\begin{aligned} (x - 4)(2x + 3) = x - 7 \\ 2x^2 - 5x - 12 = x - 7 \quad \text{Simplify each side.} \\ 2x^2 - 6x - 5 = 0 \quad \text{Write in standard form.} \end{aligned}$$

Sum of roots = $-b/a = -(-6)/2 = 3$

- Sum of roots = $-b/a = -b/3 = 3$
 Product of roots = $c/a = c/3 = 2$
 $b = -9, c = 6$
- Let $x = \text{first number}$
 $7 - x = \text{second number}$
 Product = 10, so $x(7 - x) = 10$.
 Solve for x , and you get $x = 2$ and $x = 5$.
 The numbers are 2 and 5.
- Let $x = \text{length of the rectangle}$
 $3x = \text{width of the rectangle}$
 Area = (width)(length) = 60, so $x(3x) = 60$.
 Solve for x , and you get $x = 2\sqrt{5}$ and $x = -2\sqrt{5}$.
 The length is $2\sqrt{5}$ cm. The width is $6\sqrt{5}$.
- The answer is D.
 The leading coefficient must be negative because the parabola opens down, so eliminate A and C.
 $(3, 0)$ is on the graph, so choose D.
- The answers are A, C, and D.
 - The parabola opens up because the leading coefficient is positive.
 - The x -intercepts are -5 and 1 .
 - The axis of symmetry is halfway between the two x -intercepts. $x = (-5 + 1)/2 = -2$
 - The axis of symmetry is the x -coordinate of the vertex. The vertex is $(-2, f(-2)) = (-2, -9)$.
 - The y -intercept is $f(0) = -5$.
- Convert to vertex form by completing the square.

$$\begin{aligned} f(x) &= x^2 + 6x - 1 \\ &= x^2 + 6x + 9 - 9 - 1 \\ &= (x + 3)^2 - 9 - 1 \\ &= (x + 3)^2 - 10 \end{aligned}$$

The vertex is $(-3, -10)$.
- $a < 0$ because the parabola opens down.
 $c < 0$ because the y -intercept is negative.
 $b > 0$ because the axis of symmetry $(-b/2a)$ is positive and $a < 0$.
- The discriminant, $b^2 - 4ac$, must be zero.

$$\begin{aligned} 4^2 - 4(2)c &= 0 \quad \text{Set discriminant} = 0. \\ c &= 2 \quad \text{Solve for } c. \end{aligned}$$
- The discriminant, $b^2 - 4ac$, must be negative.

$$\begin{aligned} (-6)^2 - 4k(3) &< 0 \quad \text{Set discriminant} < 0. \\ k &> 3 \quad \text{Solve for } k. \end{aligned}$$

18. $f(x) = x^2$	Parent function
$y = -x^2$	Reflect over the x -axis.
$y = -(x - 1)^2$	Shift right 1 unit.
$g(x) = -(x - 1)^2 - 2$	Shift down 2 units.

$g(x) = -x^2 + 2x - 3$ Standard form

19. First, find the equation of the parabola.

$y = a(x - h)^2 + k$	Use vertex form.
$y = a(x - 2)^2$	Plug in vertex $(2, 0)$.
$-1 = a(0 - 2)^2$	Plug in point $(0, -1)$.
$a = -1/4$	Solve for a .
$y = -\frac{1}{4}(x - 2)^2$	Vertex form
$y = -\frac{1}{4}x^2 + x - 1$	Standard form

Second, determine the inequality sign.

The line is solid and $(0, -2)$ is a solution,

so the inequality is $y \leq -\frac{1}{4}x^2 + x - 1$.

20. $(x + 2)(x - 3) > 0$

The related equation has roots -2 and 3 . Use them to create three intervals. Then test a point in each interval to determine the solution set.

$x < -2$	$-2 < x < 3$	$x > 3$
$x = -3$ is a solution.	$x = 0$ is not a solution.	$x = 4$ is a solution.

The solution set is $x < -2$ or $x > 3$.

21. $-16t^2 + 80t = 0$

$$-16t(t - 5) = 0$$

$$t = 0, t = 5$$

The ball will hit the ground after 5 seconds.