

LESSON 168

1.
$$\begin{aligned} & (x^2 + 1)(x^4 + x^2 + 1) \\ &= x^6 + x^4 + x^2 + x^4 + x^2 + 1 \\ &= x^6 + 2x^4 + 2x^2 + 1 \\ &\neq x^6 + 1 \end{aligned}$$

The equation is NOT an identity.

2.
$$\begin{aligned} & 2x^3 + 16 \\ &= 2(x^3 + 8) \quad \text{Factor out the GCF.} \\ &= 2(x + 2)(x^2 - 2x + 4) \quad \text{Sum of cubes} \end{aligned}$$

3.
$$\begin{aligned} & x^4 + 3x^2 - 4 \\ &= u^2 + 3u - 4 \quad \text{Let } u = x^2. \\ &= (u - 1)(u + 4) \quad \text{Factor.} \\ &= (x^2 - 1)(x^2 + 4) \quad \text{Substitute back.} \\ &= (x + 1)(x - 1)(x^2 + 4) \quad \text{Difference of squares} \end{aligned}$$

4.
$$\begin{aligned} & 3x^3 + x^2 - 12x - 4 \\ &= x^2(3x + 1) - 4(3x + 1) \quad \text{Factor by grouping.} \\ &= (3x + 1)(x^2 - 4) \\ &= (3x + 1)(x + 2)(x - 2) \quad \text{Difference of squares} \end{aligned}$$

5.
$$\begin{aligned} & x^2(x - 5)^3(x + 5) = 0 \\ & x = 0 \text{ or } x - 5 = 0 \text{ or} \\ & x + 5 = 0 \quad \text{Zero-product property} \\ & x = 0, x = 5, x = -5 \quad \text{Solve for } x. \\ & x = 0 \text{ has multiplicity 2.} \\ & x = 5 \text{ has multiplicity 3.} \\ & x = -5 \text{ has multiplicity 1.} \end{aligned}$$

6.
$$\begin{aligned} & x^3 - x^2 = x \\ & x^3 - x^2 - x = 0 \quad \text{Standard form} \\ & x(x^2 - x - 1) = 0 \quad \text{Factored form} \\ & x = 0 \text{ or } x^2 - x - 1 = 0 \quad \text{Zero-product property} \\ & x = 0, x = \frac{1 \pm \sqrt{5}}{2} \quad \text{Solve for } x. \end{aligned}$$

7.
$$\begin{aligned} & x^3 - 2x^2 + 5x = 0 \\ & x(x^2 - 2x + 5) = 0 \quad \text{Factored form} \\ & x = 0 \text{ or } x^2 - 2x + 5 = 0 \quad \text{Zero-product property} \\ & x = 0, x = \frac{2 \pm \sqrt{-16}}{2} \quad \text{Solve for } x. \end{aligned}$$

$x = 0, x = 1 \pm 2i$

8.
$$\begin{aligned} & (x - 3)(x - 2i)(x + 2i) = 0 \quad \text{Factored form} \\ & (x - 3)(x^2 + 4) = 0 \quad \text{Multiply out.} \\ & x^3 - 3x^2 + 4x - 12 = 0 \quad \text{Standard form} \end{aligned}$$

9. Sum of $2 \pm \sqrt{5} = 4$
Product of $2 \pm \sqrt{5} = -1$
Quadratic factor with roots $2 \pm \sqrt{5} = x^2 - 4x - 1$

$x(x^2 - 4x - 1) = 0 \quad \text{Factored form}$
 $x^3 - 4x^2 - x = 0 \quad \text{Standard form}$

10.
$$\begin{aligned} & x(x - 2)(x - 1)^2 = 0 \quad \text{Factored form} \\ & x(x - 2)(x^2 - 2x + 1) = 0 \quad \text{Multiply out.} \\ & (x^2 - 2x)(x^2 - 2x + 1) = 0 \\ & x^4 - 4x^3 + 5x^2 - 2x = 0 \quad \text{Standard form} \end{aligned}$$

11. The answer is B.

The zeros are $-3, -1, 2$, and 3 , so the function has factors $(x + 3), (x + 1), (x - 2)$, and $(x - 3)$.
 $x^2 - 9$ is factored as $(x + 3)(x - 3)$.

12. The answer is D.

The zeros are 0 and 4 , so eliminate A and C.
The leading coefficient is negative because the right end of the graph goes down, so choose D.

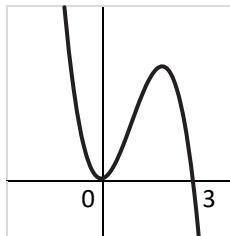
13. The answer is A.

The zeros are -1 and 2 , so eliminate C and D.
Both zeros have an odd multiplicity because the graph crosses the x -axis at them, so choose A.

14. The answers are B and C.

- A) The zero 1 has multiplicity 3.
- B) The graph touches the x -axis at $x = -3$ because $x = -3$ has an even multiplicity of 2.
- C) Test a point. $f(0) = 9 > 0$
- D) The leading term is $-x^5$. The degree is 5 (odd). The leading coefficient is -1 (negative). The left end goes up and the right end goes down.

15.
$$\begin{aligned} & x^5 + 2x^4 + x^3 = 0 \quad \text{Set } f(x) = 0. \\ & x^3(x^2 + 2x + 1) = 0 \quad \text{Factor out the GCF.} \\ & x^3(x + 1)^2 = 0 \quad \text{Perfect square trinomial} \\ & x = 0 \text{ (multiplicity 3, crosses the } x\text{-axis)} \\ & x = -1 \text{ (multiplicity 2, touches the } x\text{-axis)} \end{aligned}$$


16.

The zeros are $0, 1$, and 3 .

Sketch the graph, or test a point in each interval created by the zeros.

The positive intervals are $(0, 1)$ and $(3, \infty)$.

17. $f(x) = -x^2(x - 3)$

The zeros are 0 (multiplicity 2) and 3 (multiplicity 1).

Sketch the graph, or test a point in each interval created by the zeros.

The positive intervals are $(-\infty, 0)$ and $(0, 3)$.

18. $f(x) = a(x + 2)(x - 2)(x - 3)$ Factored form
 $6 = a(0 + 2)(0 - 2)(0 - 3)$ Plug in $(0, 6)$.
 $6 = 12a; a = 1/2$ Solve for a .

$$f(x) = \frac{1}{2}(x + 2)(x - 2)(x - 3) \quad \text{Plug in } a.$$

$$f(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 - 2x + 6 \quad \text{Standard form}$$

19. $f(x) = ax^2(x - 2)^2$ Factored form
 $3 = a(1^2)(1 - 2)^2$ Plug in $(1, 3)$.
 $3 = a$ Solve for a .
 $f(x) = 3x^2(x - 2)^2$ Plug in a .
 $f(x) = 3x^4 - 12x^3 + 12x^2$ Standard form

20. $x^3(x^2 - 5) + 4x = 0$
 $x^5 - 5x^3 + 4x = 0$
 $x(x^4 - 5x^2 + 4) = 0$
 $x(x^2 - 1)(x^2 - 4)$
 $x(x + 1)(x - 1)(x + 2)(x - 2) = 0$
 $x = 0, x = -1, x = 1, x = -2, x = 2$
Sum = $0 + (-1) + 1 + (-2) + 2 = 0$

21. $(2i)^3 + b(2i)^2 + c(2i) - 4 = 0$ Plug in $x = 2i$.
 $8i^3 + 4bi^2 + 2ci - 4 = 0$ Simplify.
 $-8i - 4b + 2ci - 4 = 0$
 $(-4b - 4) + (2c - 8)i = 0$ Write as $a + bi$.
 $-4b - 4 = 0$ and $2c - 8 = 0$
 $b = -1, c = 4$