

LESSON 169

1. $(2x^2)(5x^3) = 2 \cdot 5 \cdot x^{2+3} = 10x^5$

2. $\frac{(9x^{-4})(2x^3)}{6x} = \frac{9 \cdot 2}{6} x^{-4+3-1} = 3x^{-2} = \frac{3}{x^2}$

3. $(8x^2)(2x^{-3})^{-2} = (2^3x^2)(2^{-2}x^6) = 2x^8$
 $ak = 2(8) = 16$

4. $\left(\frac{x^3y^2}{x^2y^4}\right)^5 = \frac{(x^3y^2)^5}{(x^2y^4)^5} = \frac{x^{15}y^{10}}{x^{10}y^{20}} = x^5y^{-10}$

$m - n = 5 - (-10) = 15$

5. $e \cdot e^{-1} \cdot e^{x-2} = e^{1-1+x-2} = e^{x-2}$

6. $(6e^{-3x})^2 = 6^2 e^{-6x} = 36e^{-6x}$

$a/k = 36/(-6) = -6$

7. $7^{5-2x} = 7^{-x}$

$5 - 2x = -x$ One-to-one property
 $x = 5$ Solve for x .

8. $2^{2x-5} = 8$

$2^{2x-5} = 2^3$ Rewrite using base 2.
 $2x - 5 = 3$ One-to-one property
 $x = 4$ Solve for x .

$2^x = 2^4 = 16$

9. $100^{2x-7} = \left(\frac{1}{1000}\right)^x$

$(10^2)^{2x-7} = (10^{-3})^x$ Rewrite using base 10.
 $10^{2(2x-7)} = 10^{-3x}$ Exponent rules
 $2(2x - 7) = -3x$ One-to-one property
 $x = 2$ Solve for x .

10. The answer is D.

$3^x \cdot (3^2)^y = (3^3)^z$ Rewrite using base 3.
 $3^{x+2y} = 3^{3z}$ Exponent rules
 $x + 2y = 3z$ One-to-one property

11. The answer is A.

12. The answer is D.

The graph involves a reflection of $y = 2^x$ over the x -axis, so eliminate A and B.
 $(0, 2)$ is on the graph, so choose D.

13. $f(x)$ is $y = 4^x$ shifted up 1 unit.

The range of $y = 4^x$ is $(0, \infty)$, so the range of $f(x)$ is $(1, \infty)$.

14. $f(x)$ is $y = 3^x$ shifted right 1 unit and down 4 units.

The asymptote of the graph of $y = 3^x$ is $y = 0$. so the asymptote of the graph of $f(x)$ is $y = -4$.

15. $f(x) = ab^x$

$5 = ab^0$

$a = 5$

$f(x) = ab^x$

$10 = 5b^1$

$b = 2$

$f(x) = 5(2)^x$

Plug in $(0, 5)$.

Zero exponent rule ($b^0 = 1$)

Plug in a and $(1, 10)$.

Solve for b .

Write the function.

16. $f(x) = ab^x$

$18 = ab^{-1}$

$2 = ab^1$

$a = 18b$

$2 = (18b)b^1$

$2 = 18b^2$

$b^2 = 1/9$

$b = 1/3$

$a = 18b = 6$

Solve eq1 for a .

Plug a into eq2.

Solve for b .

Use b to find a .

$f(x) = 6\left(\frac{1}{3}\right)^x$

Write the function.

17. $y = e^x$

$y = -e^x$

$y = -e^{x+2}$

$f(x) = -e^{x+2} - 3$ Shift down 3 units.

Parent function

Reflect over the x -axis.

Shift left 2 units.

18. The purchase value of the car is \$22,000.

19. $a = \text{initial balance} = 40000$

$b = 100\% + 4\% = 104\% = 1.04$ because
 new balance = previous + 4% of previous
 The function is $y = 4000(1.04)^t$.

20. $a = \text{initial population} = 80000$

$b = 100\% - 5\% = 95\% = 0.95$ because
 new population = previous - 5% of previous
 The function $y = 80000(0.95)^t$ models the population
 of the town after t years.

When $t = 10$, $y = 47898.95513\dots$

The population will be about 48,000.

21. $a = \text{initial number of bacteria} = 10$

$b = \text{growth factor} = 2$

$t/2 = \text{exponent because the } y\text{-value doubles}$
 $(\text{is multiplied by 2}) \text{ at } t = 2, 4, 6, \dots$

The function $y = 10(2)^{t/2}$ models the number of
 bacteria after t hours.

When $t = 8$, $y = 160$. There will be 160 bacteria.

22. $25^x - 5^{x+2} = (5^2)^x - 5^{x+2}$ Rewrite using base 5.

$= (5^x)^2 - 5^x \cdot 5^2$ Exponent rules

$= y^2 - 25y$ Substitute.