

LESSON 170

- $10^b = a$
- $\log_2 1 = 0$ Zero rule
 $\log_2 64 = \log_2 2^6 = 6$ Use $\log_b b^n = n$.
 $\log_2 1 + \log_2 64 = 0 + 6 = 6$
- $\log_7 7 = 1$ Identity rule
 $\log_7 \frac{1}{49} = \log_7 7^{-2} = -2$ Use $\log_b b^n = n$.
 $\log_7 7 + \log_7 \frac{1}{49} = 1 - 2 = -1$
- The answer is D.
- $\log_3 3^2 x^4$
 $= \log_3 3^2 + \log_3 x^4$ Product rule
 $= 2 \log_3 3 + 4 \log_3 x$ Power rule
 $= 2 + 4 \log_3 x$ Identity rule
 $a + b = 2 + 4 = 6$
- $\log_2 \frac{2^2 x^3}{5}$
 $= \log_2 2^2 x^3 - \log_2 5$ Quotient rule
 $= \log_2 2^2 + \log_2 x^3 - \log_2 5$ Product rule
 $= 2 \log_2 2 + 3 \log_2 x - \log_2 5$ Power rule
 $= 2 + 3 \log_2 x - \log_2 5$ Identity rule
- $\log_7 6x + 2 \log_7 x - \log_7 3$
 $= \log_7 6x + \log_7 x^2 - \log_7 3$ Power rule
 $= \log_7 6x^3 - \log_7 3$ Product rule
 $= \log_7 \frac{6x^3}{3}$ Quotient rule
 $= \log_7 2x^3$ Simplify.
- $\log(2x - 3) = \log(9 - x)$
 $2x - 3 = 9 - x$ One-to-one property
 $x = 4$ Solve for x .
- $\ln x + \ln(x + 1) = \ln(4x - 2)$
 $\ln x(x + 1) = \ln(4x - 2)$ Product rule
 $x(x + 1) = 4x - 2$ One-to-one property
 $x^2 - 3x + 2 = 0$ Standard form
 $(x - 1)(x - 2) = 0$ Solve for x .
 $x = 1, x = 2$

- $\log_3 x + \log_3(x - 6) = 3$
 $\log_3 x(x - 6) = 3$ Product rule
 $x(x - 6) = 3^3$ Exponential form
 $x^2 - 6x - 27 = 0$ Standard form
 $(x + 3)(x - 9) = 0$ Solve for x .
 $x = -3, x = 9$
 $x = -3$ is extraneous, so the solution is $x = 9$.
 $\log_3 a = \log_3 9 = \log_3 3^2 = 2$
- $e^{x+2} - 1 = 6$
 $e^{x+2} = 7$ Isolate the exponential.
 $x + 2 = \ln 7$ Logarithmic form
 $x = \ln 7 - 2$ Solve for x .
- The answer is B.
 $f(x)$ is $y = \log_2 x$ reflected over the y -axis.
- The answer is A.
 $(-2, 0)$ is on the graph, so eliminate B and D.
The graph does not involve a reflection, so choose A.
- The answer is B.
 $y = \ln x$ Parent function
 $y = 2 \ln x$ Stretch vertically by 2.
 $y = 2 \ln(-x)$ Reflect over the y -axis.
 $f(x) = 2 \ln(-x) - 3$ Shift down 3 units.
- $f(x)$ is $y = \log x$ shifted down 4 units. Vertical shifts do not change the domain of a logarithmic function.
The domain of $y = \log x$ is $(0, \infty)$, so the range of $f(x)$ is also $(0, \infty)$.
- $f(x)$ is $y = \log x$ shifted right 1 unit and up 2 units.
The asymptote of the graph of $y = \log x$ is $x = 0$, so the asymptote of the graph of $f(x)$ is $x = 1$.
- The initial balance is \$2,000.
 $2000(1.03)^t = 4000$
 $(1.03)^t = 2$
 $t = \log_{1.03} 2 = \frac{\ln 2}{\ln 1.03} = 23.44977 \dots$
It will take about 23 years.
- $100e^{-t/50} = 50$
 $e^{-t/50} = 1/2$
 $-t/50 = \ln(1/2)$
 $t = -50 \ln(1/2) = 34.65735 \dots$
It will take about 35 years.

19. The initial population is 40,000.

The decay factor is $100\% - 6\% = 94\% = 0.94$.

The function $y = 40000(0.94)^t$ models the population of the town after t years.

$$40000(0.94)^t = 30000$$

$$(0.94)^t = 3/4$$

$$t = \log_{0.94}(3/4) = \frac{\ln(3/4)}{\ln 0.94} = 4.64937 \dots$$

It will take about 5 years.

20. $\log_3 20 = \log_3(5 \cdot 2^2)$

$$= \log_3 5 + \log_3 2^2 \quad \text{Product rule}$$

$$= \log_3 5 + 2 \log_3 2 \quad \text{Power rule}$$

$$= m + 2n \quad \text{Substitute.}$$