

LESSON 173

1. $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $= \sqrt{(-7 - (-1))^2 + (3 - 5)^2} = \sqrt{40} = 2\sqrt{10}$

2. $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{5 - 3}{2}, \frac{1 - 9}{2}\right) = (1, -4)$

3. The answer is C.

4. The answer is A.

Convert to standard form by completing the square.

$$x^2 + y^2 - 8x + 2y + 1 = 0$$

$$x^2 + y^2 - 8x + 2y = -1$$

$$x^2 - 8x + y^2 + 2y = -1$$

$$(x^2 - 8x + 16) + (y^2 + 2y + 1) = -1 + 16 + 1$$

$$(x - 4)^2 + (y + 1)^2 = 16$$

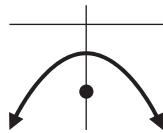
Center: (4, -1), Radius: 4

5. Center = midpoint between (-2, 0) and (-4, 4)

$$= \left(\frac{-2 - 4}{2}, \frac{0 + 4}{2}\right) = (-3, 2)$$

Radius = distance between (-3, 2) and (-2, 0)

$$= \sqrt{(-2 - (-3))^2 + (0 - 2)^2} = \sqrt{5}$$


$$(x + 3)^2 + (y - 2)^2 = 5 \quad \text{Standard form}$$

$$x^2 + 6x + 9 + y^2 - 4y + 4 = 5 \quad \text{Multiply out.}$$

$$x^2 + y^2 + 6x - 4y + 8 = 0 \quad \text{General form}$$

6. The answers are A and B.

A) The focus is below the directrix, so the parabola opens down.

B) The vertex, the midpoint between the focus and the directrix, is (3, 0).

C) The axis of symmetry, the line passing through the focus and the vertex, is $x = 3$.

D) (0, -3) is not equidistant from the focus and the directrix, so it is not on the parabola.

7. Let (x, y) be a point on the parabola.

distance to the directrix = distance to the focus

$$\sqrt{(x - 1)^2 + (y - 0)^2} = \sqrt{(x - 3)^2 + (y - 0)^2}$$

$$\sqrt{(x - 1)^2} = \sqrt{(x - 3)^2 + y^2} \quad \text{Simplify.}$$

$$(x - 1)^2 = (x - 3)^2 + y^2 \quad \text{Square both sides.}$$

$$x^2 - 2x + 1 = x^2 - 6x + 9 + y^2 \quad \text{Expand.}$$

$$x = \frac{1}{4}y^2 + 2 \quad \text{Solve for } x.$$

8. $(x + 2)^2 + (x + 2)^2 = 8$ Plug eq2 into eq1.

$$2x^2 + 8x = 0$$

$$2x(x + 4) = 0$$

$$x = 0, x = -4$$

$$y = 0 + 2 = 2$$

$$y = -4 + 2 = -2$$

Solutions: (0, 2), (-4, -2)

9. $2x + (x - 1)^2 = 1$ Plug eq1 into eq2.

$$x^2 = 0$$

$$x = 0$$

$$y = (0 - 1)^2 = 1$$

Solution: (0, 1)

10. $x^2 + 3 = 4x + k$ Plug eq1 into eq2.

$$x^2 - 4x + 3 - k = 0$$

The discriminant, $b^2 - 4ac$, must be zero.

$$(-4)^2 - 4(1)(3 - k) = 0 \quad \text{Set discriminant} = 0.$$

$$k = -1 \quad \text{Solve for } k.$$

11. $a_1 = 5, d = 4$

$$a_n = a_1 + (n - 1)d$$

$$= 5 + 4(n - 1)$$

$$= 4n + 1$$

$$a_{25} = 4(25) + 1 = 101$$

12. $d = 6$

$$p = 1 - 6 = -5$$

$$q = 7 + 6 = 13$$

$$p + q = -5 + 13 = 8$$

13. $a_1 = 5, r = -2$

$$a_n = a_1 r^{n-1}$$

$$= 5(-2)^{n-1}$$

$$a_6 = 5(-2)^5 = -160$$

14. 1, 4, 7, 10, ...

Each term is 3 more than the previous term.

$$a_1 = 1, a_n = a_{n-1} + 3$$

15. 3, 6, 12, 24, 48, ...

Each term is twice the previous term.

$$a_1 = 3, a_n = 2a_{n-1}$$

16. The answer is D.

A) $5 + 6 + 7 + \dots + 17$
 B) $5 + 6 + 7 + 8 + 9$
 C) $5 + 10 + \dots + 25$

17. Arithmetic with $a_1 = 2$ and $d = 7$

$$a_n = 2 + 7(n - 1) = 7n - 5$$

$$a_{30} = 7(30) - 5 = 205$$

$$S_{30} = \frac{30}{2}(a_1 + a_{30}) = \frac{30}{2}(2 + 205) = 3105$$

18. Geometric with $a_1 = 1$ and $r = 5$

$$S_8 = a_1 \left(\frac{1 - r^8}{1 - r}\right) = 1 \left(\frac{1 - 5^8}{1 - 5}\right) = 97656$$

19. Each year the balance increases by $2500(0.04) = \$100$. The balance at the end of the first year is \$2,600.

$$2600, 2700, 2800, 2900, \dots$$

$$a_1 = 2500 \text{ and } d = 100, \text{ so } a_n = 100n + 2500.$$

$$a_{10} = 100(10) + 2500 = 3500$$

The balance will be \$3,500.

20. Each height is 0.5 times the prior one. The height after the first bounce is $40(0.5) = 20$ meters.

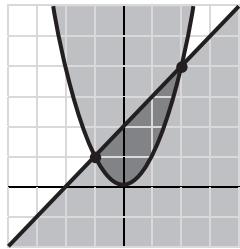
$$20, 20(0.5), 20(0.5)^2, 20(0.5)^3, \dots$$

$$a_1 = 20 \text{ and } r = 0.5, \text{ so } a_n = 20(0.5)^{n-1}.$$

$$a_5 = 20(0.5)^4 = 1.25$$

The ball will rebound to 1.25 meters.

21. 5, 5.5, 6, 6.5, 7, 7.5, 8, ...


$$a_1 = 5 \text{ and } d = 0.5, \text{ so } a_n = 0.5n + 4.5.$$

$$a_{25} = 0.5(25) + 4.5 = 17$$

$$S_{25} = \frac{25}{2} (a_1 + a_{25}) = \frac{25}{2} (5 + 17) = 275$$

The total distance is 275 miles.

21.

The graphs intersect at $(-1, 1)$ and $(2, 4)$.

The maximum possible value of y is 4.