

LESSON 22

1. Let x = first even integer

$x + 2$ = second even integer

$x + 4$ = third even integer

Sum = 12, so $x + (x + 2) + (x + 4) = 12$.

Solve for x , and you get $x = 2$.

The numbers are 2, 4 and 6.

2. Let x = original price

$0.15x$ = price increase

New price = original price + price increase,
so $x + 0.15x = 1.38$.

Solve for x , and you get $x = 1.2$.

The original price was \$1.20/lb.

3. Let x = number of dimes

$x + 3$ = number of nickels

$0.1x$ = value of dimes

$0.05(x + 3)$ = value of nickels

Total value = 0.9, so $0.1x + 0.05(x + 3) = 0.9$.

Solve for x , and you get $x = 5$.

Olivia has 5 dimes and 8 nickels.

4. Let x = Kate's age now

$x + 6$ = Dale's age now

$x - 3$ = Kate's age 3 years ago

$(x + 6) - 3$ = Dale's age 3 years ago

Dale's age 3 years ago = twice Kate's age 3 years ago,
so $(x + 6) - 3 = 2(x - 3)$.

Solve for x , and you get $x = 9$.

Kate is 9 years old. Dale is 15 years old.

5. Let x = number of adults

Let y = number of children

A total of 10 tickets, so $x + y = 10$.

Total cost = 78, so $9x + 7y = 78$.

Solve the system, and you get $x = 4$ and $y = 6$.

There were 4 adults and 6 children in the group.

6. Let x = price of an adult ticket

Let y = price of a child ticket

\$48 for 2 adult tickets and 3 child tickets,

so $2x + 3y = 48$.

\$44 for 1 adult ticket and 4 child tickets,

so $x + 4y = 44$.

Solve the system, and you get $x = 12$ and $y = 8$.

Adult tickets cost \$12 each. Child tickets cost \$8 each.

7. Let x = number of nickels

Let y = number of dimes

Five more dimes than nickels, so $y = x + 5$.

Total value = 95, so $0.05x + 0.1y = 0.95$.

Solve the system, and you get $x = 3$ and $y = 8$.

Emma has 3 nickels and 8 dimes.

8. Let x = larger integer

Let y = smaller integer

Sum of 3 times x and y = 3, so $3x + y = 3$.

Difference of x and 3 times y = 11, so $x - 3y = 11$.

Solve the system, and you get $x = 2$ and $y = -3$.

The integers are 2 and -3 .

9. Let x = number of roses

Let y = number of lilies

A total of 24 flowers, so $x + y = 24$.

Total cost = 48, so $2.2x + 1.8y = 48$.

Solve the system, and you get $x = 12$ and $y = 12$.

Josh used 12 roses and 12 lilies.

10. Let x = price of an apple

Let y = price of a pear

\$9.20 for 5 apples and 4 pears, so $5x + 4y = 9.2$.

\$5 for 3 apples and 2 pears, so $3x + 2y = 5$.

Solve the system, and you get $x = 0.8$ and $y = 1.3$.

Apples cost \$0.80 each. Pears cost \$1.30 each.

11. Let x = number of fives

Let y = number of tens

A total of 27 bills, so $x + y = 27$.

Total value = 205, so $5x + 10y = 205$.

Solve the system, and you get $x = 13$ and $y = 14$.

Mr. Kim has 13 fives and 14 tens.

12. Let x = Joey's age now

Let y = Anna's age now

Joey is three times as old as Anna, so $x = 3y$.

$x + 5$ = Joey's age in five years

$y + 5$ = Anna's age in five years

Joey will be twice as old as Anna in five years,
so $x + 5 = 2(y + 5)$.

Solve the system, and you get $x = 15$ and $y = 5$.

Joey is 15 years old. Anna is 5 years old.

13. Let x = number of 2-point questions

Let y = number of 5-point questions

A total of 35 questions, so $x + y = 35$.

Total points = 100, so $2x + 5y = 100$.

Solve the system, and you get $x = 25$ and $y = 10$.

25 questions are worth 2-points each.

10 questions are worth 5 points each.

14. Let x = number of 4-seat tables

Let y = number of 6-seat tables

A total of 12 tables, so $x + y = 12$.

Total number of seats = 58, so $4x + 6y = 58$.

Solve the system, and you get $x = 7$ and $y = 5$.

7 tables seat 4 people.

5 tables seat 6 people.

15. Let x = width of the rectangle

Let y = length of the rectangle

Length is twice width, so $y = 2x$.

Perimeter = $2(\text{width} + \text{length}) = 18$,
so $2(x + y) = 18$.

Solve the system, and you get $x = 3$ and $y = 6$.

The rectangle is 3 feet by 6 feet.

16. Let x = tens place digit

Let y = ones place digit

Sum = 5, so $x + y = 5$.

$10x + y$ = value of the number xy

$10y + x$ = value of the number yx

yx is 9 less than xy , so $10y + x = 10x + y - 9$.

Solve the system, and you get $x = 3$ and $y = 2$.

The number is 32.