

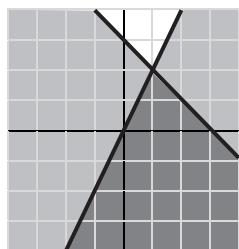
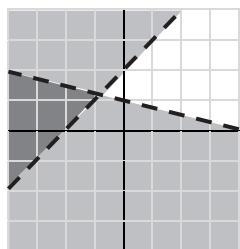
LESSON 24

1. 5 2. (2, 4) 3. -2 4. C
 5. 4 ft, 8 ft 6. 7 7. Q2, Q3 8. 2
 9. 5 10. 15

Worked-out solutions:

1. $3 = 4a - 1$ Plug (4, 3) into eq1.
 $4 = 4a$ Solve for a .
 $a = 1$
 $2(4) - 3 = b$ Plug (4, 3) into eq2.
 $b = 5$ Solve for b .
 $ab = 1(5) = 5$ Find what is asked.

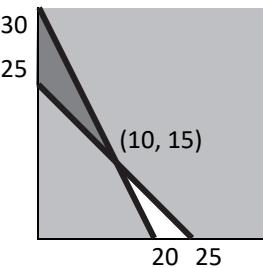
2. $3x + 2x = 10$ Plug eq1 into eq2.
 $5x = 10$ Solve for x .
 $x = 2$
 $y = 2(2) = 4$ Use eq1 to find y :



3. $2x = 8$ Add eq1 to eq2.
 $x = 4$ Solve for x .
 $4 - 2y = 1$ Plug x into eq1:
 $y = 3/2$ Solve for y :
 $x - 4y = 4 - 4(3/2)$ Find what is asked.
 $= -2$

4. The slopes must be equal, so $b = 6$.
 The y -intercepts must not be different, so $a \neq 1$.

5. Let x = width of the rectangle
 Let y = length of the rectangle
 Length is twice width, so $y = 2x$.
 Perimeter = $2(\text{width} + \text{length}) = 24$,
 so $2(x + y) = 24$.
 Solve the system, and you get $x = 4$ and $y = 8$.
 The rectangle is 4 feet by 8 feet.

6. Let x = number of 2-point baskets made
 Let y = number of 3-point baskets made
 A total of 10 baskets, so $x + y = 10$.
 Total points = 23, so $2x + 3y = 23$.
 Solve the system, and you get $x = 7$ and $y = 3$.
 Alexa made 7 2-point baskets.


7. The solution set is in Quadrants II and III. 8. The lines intersect at (1, 2).

9. $a = 5$ makes the lines parallel and the system have no overlapping region.

10. x = number of muffins
 y = number of cookies
 At least 25 muffins and cookies, so $x + y \geq 25$.
 At most \$60 to spend, so $3x + 2y \leq 60$.

The minimum y -value of the solution region is 15.

