

LESSON 49

1. Not a function

3. $x^2 - 1$

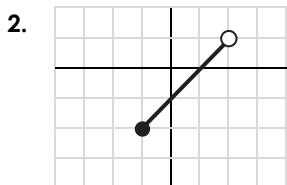
5. A, C, G

7. -2

9. $f^{-1}(x) = -\frac{2}{x-1}$

2. $[-2, 1)$

4. 1


6. $g(x) = -2\sqrt{x+5}$

8. Odd

10. $[-1, \infty)$

Worked-out solutions:

1. Not a function; Input 4 has two outputs.

$f(-1) = -2$

$f(2) = 1$

The range is
 $-2 \leq f(x) < 1$, or $[-2, 1)$
 in interval notation.

3. $f(x+1) = (x+1)^2 - 2(x+1)$

$$= x^2 + 2x + 1 - 2x - 2$$

$$= x^2 - 1$$

4. $f(2) = 2 + 7 = 9$

$$g(2) = 2^2 + 4 = 8$$

$$(f - g)(2) = f(2) - g(2) = 9 - 8 = 1$$

5. See the graphs in Lesson 40.

6. $f(x) = \sqrt{x}$ Parent function

$y = 2\sqrt{x}$ Stretch vertically by 2.

$y = -2\sqrt{x}$ Reflect over the x -axis.

$g(x) = -2\sqrt{x+5}$ Shift left 5 units.

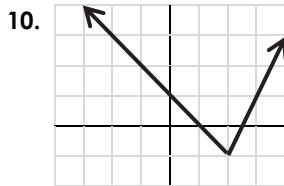
7. $\frac{f(1) - f(-1)}{1 - (-1)} = \frac{3 - 7}{1 - (-1)} = -2$

8. $f(-x) = \frac{-x}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} = -\left(\frac{x}{x^2 + 1}\right) = -f(x)$

The function is odd because $f(-x) = -f(x)$.

9. $y = \frac{x-2}{x}$ Set y equal to $f(x)$.

$$x = \frac{y-2}{y}$$
 Switch x and y .


$$xy = y - 2$$
 Multiply both sides by y .

$$xy - y = -2$$
 Subtract y from both sides.

$$y(x-1) = -2$$
 Distributive property

$$y = -\frac{2}{x-1}$$
 Divide both sides by $(x-1)$.

$$f^{-1}(x) = -\frac{2}{x-1}$$
 Write in function notation.

The range is $y \geq -1$, or $[-1, \infty)$ in interval notation.