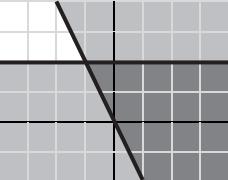
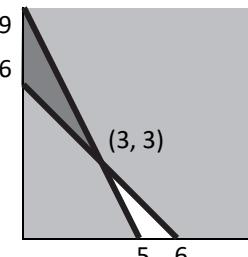


LESSON 83


- The answer is D.
 $(-1, 1)$ satisfies both equations.
- The intersection point is the solution to the system.
The graphs intersect at $(2, 1)$, so $x = 2$ and $y = 1$.
 $x + y = 2 + 1 = 3$
- $3x - (x + 1) = 3$ Plug eq1 into eq2.
 $2x - 1 = 3$ Solve for x .
 $2x = 4$
 $x = 2$
 $y = 2 + 1 = 3$ Plug x into eq1.
The solution is $(2, 3)$.
- $4x + 2y = 16$ eq1 $\times 2$
 $3x - 2y = 5$ eq2
 $7x = 21$ Add the equations.
 $x = 3$ Solve for x .
 $2(3) + y = 8$ Plug x into eq1.
 $y = 2$ Solve for y .
 $x - y = 3 - 2 = 1$
- The system will have no solutions if the lines are parallel. $k = 2$ makes the lines have the same slope and thus parallel.
- The answer is B.
 - The lines are parallel (no solutions).
 - The lines are identical (infinitely many solutions).
 - The lines intersect at one point (one solution).
 - The lines are parallel (no solutions).
- The answer is C.
Two more quarters than dimes, so $x = y + 2$.
Total value = x quarters at \$0.25 each +
 y dimes at \$0.10 each,
so $0.25x + 0.1y = 2.25$.
- Let x = larger integer
Let y = smaller integer
Sum = 65, so $x + y = 65$.
Difference = 39, so $x - y = 39$.
Solve the system, and you get $x = 52$ and $y = 13$.
The integers are 52 and 13.

- Let x = number of 2-point questions
Let y = number of 5-point questions
A total of 32 questions, so $x + y = 32$.
Total points = x questions worth 2 points each +
 y questions worth 5 points each,
so $2x + 5y = 100$.

Solve the system, and you get $x = 20$ and $y = 12$.
20 questions are worth 2-points each.
12 questions are worth 5 points each.


- Let x = number of bottles of soda
Let y = number of hotdogs
A total of 45 sodas and hotdogs, so $x + y = 45$.
Total cost = x bottles of soda at \$2 each +
 y hotdogs at \$6 each,
so $2x + 6y = 170$.
Solve the system, and you get $x = 25$ and $y = 20$.
Linda bought 25 bottles of soda.

- The answer is C.
Test a point in each region. $(-1, 0)$ satisfies both inequalities.

- The lines intersect at $(-1, 2)$.
The minimum possible value of x is -1 .

- The answer is C.
 - There is no overlap, so there are no solutions.
 - The solution set is the region between the lines.
 - There is no overlap, so there are no solutions.
- No more than 40 plants, so $x + y \leq 40$.
More carrots than tomatoes, so $x > y$.
The system is $x + y \leq 40$ and $x > y$.

- x = pounds of walnuts
 y = pounds of cashews
At least 6 pounds in all,
so $x + y \geq 6$.
Within a budget of \$30,
so $6x + 4y \leq 30$.
The lines intersect at $(3, 3)$.

The minimum y -value of the solution region is 3, so Chris must use at least 3 pounds of cashews.

- $-a = -b/2$ Set the slopes equal.
 $2a = b$ Multiply both sides by -2 .
 $b/a = 2a/a = 2$ Replace b by $2a$.