

LESSON 89

1. $3x + 5 = 2(x - 3) + 7$

$$3x + 5 = 2x + 1$$

$$x + 5 = 1$$

$$x = -4$$

$$5 - x = 5 - (-4) = 9$$

2. $5(x - 1) + 3x = kx + 1$

$$8x - 5 = kx + 1$$

$$k = 8$$

3. $|2x - 1| - 4 < 1$

$$|2x - 1| < 5$$

$$-5 < 2x - 1 < 5$$

$$-4 < 2x < 6$$

$$-2 < x < 3$$

The largest integer is 2.

4. Let x be the first even integer. Then the other three even integers are $x + 2$, $x + 4$, and $x + 6$.

$$\text{Sum} = 92, \text{ so } x + (x + 2) + (x + 4) + (x + 6) = 92.$$

Solve for x , and you get $x = 20$.

The greatest of the integers is $x + 6 = 26$.

5. Slope of line $m = \frac{1 - 0}{6 - 2} = \frac{1}{4}$

The slope of line n is -4 because perpendicular lines have the slopes that are opposite (negative) reciprocals of each other.

$$y - y_1 = m(x - x_1)$$

Point-slope form

$$y - 7 = -4(x + 1)$$

Plug in $m = -4$ and $(-1, 7)$.

$$y = -4x + 3$$

Slope-intercept form

6. The answer is C.

7. $x + 4y = 3$

First equation

$$6x - 4y = 4$$

Second equation $\times 2$

$$7x = 7$$

Add the equations

$$x = 1$$

Solve for x .

$$x + 4y = 3$$

First equation

$$1 + 4y = 3$$

Plug in $x = 1$.

$$y = 1/2$$

Solve for y .

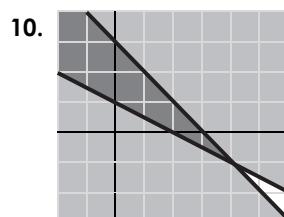
$$x + 2y = 1 + 2(1/2) = 2$$

8. The slopes must be equal, so $b = -6$.

The y -intercepts must be equal, so $a = 1$.

$$a - b = 1 - (-6) = 7$$

9. Let x = number of cupcakes


Let y = number of donuts

A total of 20 cupcakes and donuts, so $x + y = 20$.

Total cost = x cupcakes at \$4 each +
 y donuts at \$2 each,
so $4x + 2y = 50$.

Solve the system, and you get $x = 5$ and $y = 15$.

Jose bought 5 cupcakes.

Quadrant III does not contain any solutions.

11. The answer is C.

The solid line has slope -3 , so eliminate B and D.
 $(1, 2)$ is a solution, so choose C.

12. You can use any two variables.

Let x = number of student tickets

Let y = number of adult tickets

At most 80 people, so $x + y \leq 80$.

Total sales of at least \$500, so $5x + 10y \geq 500$

The system is $x + y \leq 80$ and $5x + 10y \geq 500$.

13. $x(2x - 1)^2 - (x + 3)(x - 3)$

$$= x(4x^2 - 4x + 1) - (x^2 - 9)$$

$$= 4x^3 - 4x^2 + x - x^2 + 9$$

$$= 4x^3 - 5x^2 + x + 9$$

$$a + b + c + d = 4 - 5 + 1 + 9 = 9$$

14.
$$\begin{array}{r} 3x - 1 \\ 2x + 3 \overline{) 6x^2 + 7x - 8} \\ 6x^2 + 9x \\ \hline -2x - 8 \\ -2x - 3 \\ \hline -5 \end{array}$$

$$3x - 1 + \frac{-5}{2x + 3}$$

R is the remainder, which is -5 .

15. The answers are A and D.

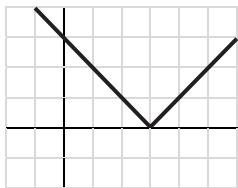
By the Factor and Remainder theorems,

A) $(x - 1)$ is a factor because $p(1) = 0$.

B) $(x + 2)$ is not a factor because $p(-2) = -36 \neq 0$.

C) The remainder is $p(-1) = -6$.

C) The remainder is $p(3) = 14$.


16. $f(-1) = 3(-1) - 1 = -4$

$$g(-1) = (-1)^2 + 3(-1) + 4 = 2$$

$$(f - g)(-1) = f(-1) - g(-1) = -4 - 2 = -6$$

17. $y = \frac{1}{2}x + \frac{3}{2}$ Set y equal to $f(x)$.
 $x = \frac{1}{2}y + \frac{3}{2}$ Switch x and y .
 $2x = y + 3$ Multiply both sides by 2.
 $y = 2x - 3$ Solve for y .
 $f^{-1}(x) = 2x - 3$ Write in function notation.

18. The answers are A, C, and E.

B) The function is neither even nor odd.
C) $\frac{f(3) - f(0)}{3 - 0} = -1$
D) Same as $y = |x|$ shifted right 3 units.

19. $(2+i)(1-2i) + (2i)(3i) - i^3$
 $= 2 - 4i + i - 2i^2 + 6i^2 - i^2 \cdot i$
 $= 2 - 4i + i - 2(-1) + 6(-1) - (-1)i$
 $= 2 - 4i + i + 2 - 6 + i$
 $= -2 - 2i$
 $ab = (-2)(-2) = 4$

20. $2x^2 - 7x + 3 = 0$
 $(2x - 1)(x - 3) = 0$ Factor the quadratic.
 $2x - 1 = 0$ or $x - 3 = 0$ Zero-product property
 $x = 1/2, x = 3$ Solve for x .

Because $m > n$, $m = 3$ and $n = 1/2$.
 $m - 4n = 3 - 4(1/2) = 1$

21. The answer is A.

Sum = $-b/a = -(-4)/1 = 4$
Product = $c/a = 6/1 = 6$

22. The discriminant, $b^2 - 4ac$, must be zero.
 $8^2 - 4(k)(2) = 0$ Set discriminant = 0.
 $64 - 8k = 0$ Solve for k .
 $k = 8$

23. $f(x) = a(x - h)^2 + k$ Use vertex form
 $f(x) = a(x + 1)^2 - 2$ Plug in vertex $(-1, -2)$.
 $-1 = a(0 + 1)^2 - 2$ Plug in point $(0, -1)$.
 $-1 = a - 2$ Solve for a .
 $a = 1$
 $f(x) = (x + 1)^2 - 2$ Vertex form

24. $f(x) = (x + 1)^2 - 1$ Vertex form
 $= x^2 + 2x$ Standard form
 $= x(x + 2)$ Intercept form

$p = 0, q = -2$
 $p + q = 0 + (-2) = -2$

25. $y = x^2$ Parent function
 $y = -x^2$ Reflect over the x -axis.
 $y = -(x + 2)^2$ Shift left 2 units.
 $f(x) = -(x + 2)^2 - 1$ Shift down 1 unit.
 $f(x) = -x^2 - 4x - 5$ Standard form

26. $(x - 1)(x - 5) < 0$
The related equation has roots 1 and 5. Use them to create three intervals. Then test a point in each interval to determine the solution set.

$x < 1$	$1 < x < 5$	$x > 5$
$x = 0$ is not a solution.	$x = 2$ is a solution.	$x = 6$ is not a solution.

The solution set is $1 < x < 5$.

The smallest integer in the solutions set is 2.

27. Convert to vertex form by completing the square.

$$\begin{aligned} h(t) &= -16t^2 + 32t + 20 \\ &= -16(x^2 - 2x) + 20 \\ &= -16(x^2 - 2x + 1 - 1) + 20 \\ &= -16(x^2 - 2x + 1) + 16 + 20 \\ &= -16(x - 1)^2 + 36 \end{aligned}$$

The maximum height is 36 feet.

28. $x^3 - x^2 - 2x + 2 = 0$
 $x^2(x - 1) - 2(x - 1) = 0$ Factor by grouping.
 $(x - 1)(x^2 - 2) = 0$ Factored form
 $x - 1 = 0$ or $x^2 - 2 = 0$ Zero-product property
 $x = 1, x^2 = 2$ Solve for x .
 $x = 1, x = \pm\sqrt{2}$

Sum = $1 + \sqrt{2} - \sqrt{2} = 1$

29. $(x + 2)(x - \sqrt{3})(x + \sqrt{3}) = 0$ Factored form
 $(x + 2)(x^2 - 3) = 0$ Multiply out.
 $x^3 + 2x^2 - 3x - 6 = 0$ Standard form

30. The answer is B.
The zeros are -3 and 1 , so eliminate C and D.
Zero 1 has an even multiplicity because the graph touches the x -axis at $x = 1$, so choose B.