

LESSON 98

1. Exponential decay ($b = 0.96 < 1$)
2. The population decreases by 4% each year.
3. a. $a = 50000, b = 1.05$
The function is $y = 50000(1.05)^t$.
b. When $t = 7, y = 70355.02113\ldots$.
The salary will be about \$70,355.
4. a. $a = 50000, b = 0.95$
The function is $y = 50000(0.95)^t$.
b. When $t = 7, y = 34916.86480\ldots$.
The population will be about 34917.
5. a. $a = 300, b = 0.6$, exponent = $t/10$
The function is $y = 300(0.6)^{t/10}$.
b. When $t = 30, y = 64.8$.
There will be about 65 bears.
6. $a = 3000, b = 1.04$
The function is $y = 3000(1.04)^t$.
It is exponential growth ($b = 1.04 > 0$).
When $t = 8, y = 4105.70715\ldots$.
The balance will be about \$4,106.
7. $a = 60000, b = 1.06$
The function is $y = 60000(1.06)^t$.
It is exponential growth ($b = 1.06 > 0$).
When $t = 10, y = 107450.86179\ldots$.
The salary will be about \$107,451.
8. $a = 25000, b = 0.9$
The function is $y = 25000(0.9)^t$.
It is exponential decay ($b = 0.9 < 0$).
When $t = 6, y = 13286.025$.
The value of the car will be about \$13,286.
9. $a = 30000, b = 0.96$
The function is $y = 30000(0.96)^t$.
It is exponential decay ($b = 0.96 < 0$).
When $t = 8, y = 21641.68736\ldots$.
The population will be about 21,642.
10. $a = 1013, b = 0.86$
The function is $y = 1013(0.86)^t$.
It is exponential decay ($b = 0.86 < 0$).
When $t = 5, y = 476.54256\ldots$.
The pressure will be about 477 millibars.
11. $a = 50, b = 2$, exponent = $t/2$
The function is $y = 50(2)^{t/2}$.
It is exponential growth ($b = 2 > 0$).
When $t = 10, y = 1600$.
There will be 1600 bacteria.
12. $a = 300, b = 1.2$, exponent = $t/5$
The function is $y = 300(1.2)^{t/5}$.
It is exponential growth ($b = 1.2 > 0$).
When $t = 30, y = 895.7952$.
The website will have about 896 hits.
13. Let $t = \text{year}$. Note that 6 months is 0.5 year.
 $a = 10000, b = 1.02$, exponent = $t/0.5$
The function is $y = 10000(1.02)^{t/0.5}$.
It is exponential growth ($b = 1.02 > 0$).
When $t = 20, y = 22080.39663\ldots$.
There will be about \$22,080.