

LESSON 99

1. $1/x$ 2. 2 3. e^{3x} 4. 2
 5. 1 6. A 7. $y = 1$
 8. $f(x) = 2(3)^x$ 9. $y = 20(2)^{t/3}$
 10. About \$3,560

Worked-out solutions:

1.
$$\frac{(2x^{-2})(8x^5)}{16x^4} = \frac{2 \cdot 8}{16} x^{-2+5-4} = x^{-1} = \frac{1}{x}$$
2.
$$\left(\frac{x^3}{3x^{-6}}\right)^2 = \frac{(x^3)^2}{(3x^{-6})^2} = \frac{x^6}{3^2 x^{-12}} = \frac{1}{3^2} x^{6-(-12)} = \frac{1}{9} x^{18}$$

 $ak = (1/9)(18) = 2$
3. $(4e^x)(2e^{-x})^{-2} = (2^2 e^x)(2^{-2} e^{2x}) = 2^0 e^{3x} = e^{3x}$
4. $3^{2x} = 81$
 $3^{2x} = 3^4$ Rewrite using base 3.
 $2x = 4$ One-to-one property
 $x = 2$ Solve for x .
5. $4^{3-x} = 8^{x+2}$
 $(2^2)^{3-x} = (2^3)^{x+2}$ Rewrite using base 2.
 $2^{2(3-x)} = 2^{3(x+2)}$ Exponent rules
 $2(3-x) = 3(x+2)$ One-to-one property
 $x = 0$ Solve for x .
 $2^x = 2^0 = 1$
6. e is a number greater than 2 but less than 3, so the graph will have the same shape as $y = 2^x$.
7. $f(x)$ is $y = 2^x$ shifted up 1 unit.
 The asymptote of the graph of $y = 2^x$ is $y = 0$, so the asymptote of the graph of $f(x)$ is $y = 1$.
8. $f(x) = ab^x$
 $2 = ab^0$ Plug in $(0, 2)$.
 $a = 2$ Zero exponent rule ($b^0 = 1$)
 $f(x) = ab^x$
 $6 = 2b^1$ Plug in a and $(1, 6)$.
 $b = 3$ Divide both sides by 2.
 $f(x) = 2(3)^x$ Write the function.
9. $a =$ initial number of bacteria = 20
 $b =$ growth factor = 2
 $t/3 =$ exponent because the y -value doubles
 (is multiplied by 2) at $t = 3, 6, 9, \dots$.
 The function is $y = 20(2)^{t/3}$.

10. $a =$ initial value = 20000

$b = 100\% - 25\% = 75\% = 0.75$ because
 the new value is 75% of the previous value.

The function $y = 20000(0.75)^t$ models the value of
 the car after t years.

When $t = 6$, $y = 3559.57031\dots$

The value of the car will be about \$3,560.