
Oxygen:					
symbol	symbol at		per		
	_ protons		electrons		
Oxygen has	s valer	nce electrons			
Electron Dot Diag	gram – atom's		surrounded by		
	to represen	t its	electrons		
Example electron dot diagrams:					
	0		Li		
Problem Set 1:					
Lewis Structure:	diagram represent electrons in a		ngement of		
Most atoms need	valence ele	ectrons to be	come stable. The exceptions		
are H and He which only need valence electrons to be stable.					

Lewis structure for H_2 H_- H shared pair

- 2 electrons belonging to both _____
- represented by a ______ between symbols

Lewis structure for Cl₂:

Each CL atom has _____ valence electrons, giving a total of _____ valence electrons to work with.

unshared pair

- electrons belonging to only one _____
- represented by 2 dots

Lewis structure for HCI:

H CI

When more than two atoms bond, you must determine which is central.

The central atom is:

- frequently _____
- never _____
- often atom with ______ electronegativity

L	_ewis structure for CH ₃ I:			
	There are a total ofvalence electrons to work with	.)		
Probler	m Set 2:			
L	_ewis structure of ethene, C₂H₄	(has total	of	valence electrons)
	H	1	Н	
		C C		
	H	1	Н	

type of bond	pairs of electrons shared

Problem Set 3:

Polyatomic Ion:		bonded group of ions with a			_
Example: NO ₃ 1-	(has gained of	electron to give a total valence electrons to work with)		Ο	
	·		0	N	
				0	

Problem Set 4:

The Chemistry Quiz

CR1. _____ CR2. ____ 1. ___ 2. ___ 3. ____ 4. ____ 5. ____