<u>Introduction</u>

The diffusion rates (velocities) of HCl and NH_3 gases will be compared. Hydrogen chloride fumes will come from hydrochloric acid and ammonia fumes will come from aqueous ammonia. Both will be simultaneously introduced into opposite ends of a glass tube. When the gases meet, they will form a white precipitate, NH_4Cl , which will form a ring in the tube.

	theory, gas molecules are in constant h other and the sides of their container with perfectly
	collisions. The temperature of a gas is a measure of the
average calculating this ene	energy of the molecules. The equation for ergy is $KE = \frac{1}{2}mv^2$.
If two gases are th	e same temperature, the molecules have the same average
kinetic energy. This	s makes KE a (constant, variable). This means that m and v^2
are	proportional. Heavier molecules move (slower, faster)
than light molecule can be stated as:	s at the same temperature. Mathematically, the relationship

$$m_1 v_1^2 = m_2 v_2^2$$
 which equals $\frac{v_1^2}{v_2^2} = \frac{m_2}{m_1}$ which equals $\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}}$

The last equation is known as **Graham's Law of Diffusion**.

Procedure:

- 1. A drop of concentrated hydrochloric acid (a source of HCl fumes) was placed on a cotton swab. A drop of concentrated aqueous ammonia was placed on another cotton swab.
- 2. The swabs were simultaneously inserted into opposite ends of a glass tube.
- 3. The glass tube was left undisturbed for two minutes.
- 4. After two minutes, a white ring was located and the center of the ring was marked.
- 5. The distance from each end of the tube to the mark was measured.

HCI: $d_1 =$ _____

 $\frac{\mathbf{v}_1}{\mathbf{v}_2} = \underline{\phantom{\mathbf{v}_1}}$

7. Calculate the molar masses of the molecules:

HCI: m₁= _____

 NH_3 : $m_2 = ______$

8. Calculate the ratio:

$$\sqrt{\frac{m_2}{m_1}} = \underline{\hspace{1cm}}$$

9. Within bounds of experimental error, does $\frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{m}_2}{\mathbf{m}_1}}$?