Temperature:

•	a measure of the	 energy of the
	particles in a sample of matter	

• does not depend on the amount of ______ in the sample

• symbol is _____; unit is _____

heat:

•	amount of	energy that flows because of a
	difference in	

• depends on _____ of sample

• symbol is _____; unit is ____(___) (1 cal = 4.18 __)

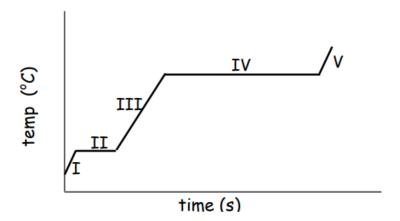
Kinetic energy is _____ in ____

Potential energy is ______

- Potential energy is hiding and cannot be ______.
- Only _____ in P.E. can be measured.

specific heat capacity:

- amount of _____ required to raise the _____ of 1 ____


 of substance 1
- symbol is _____; unit is _____

$$Q = m \times C \times \Delta t$$

When heat (Q) is absorbed by a system, part of it (C) goes into storage as _____ energy and part of it is used to make the molecules move around ______, raising the _____ (Δt).

**Why does sand get hotter in the day and colder at night than the water?

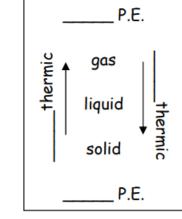
Heating Curve for Water

I: Heat is being used to raise the ______ of the _____. Q = ____ x ____ x ____

II: Heat is being used to turn solid to ______. (phase change)

Q =	×	
		required to change 1 g of
		to
Heat is bein	g used to raise the	of the
Q =	xx	_
		(phase change)
Q =	of vaporization -	required to change 1g of
		to
othermic chan	 ige: (to _ is an example.)
othermic chan	 ige: (to _ is an example.) change in which a
othermic chan	<u></u> or from its	to _ is an example.) change in which a
absorbs	ge: (or from its (Heat seems to _	to _ is an example.) change in which a
othermic chan absorbs of sy	ge: (or from its (Heat seems to _	to is an example.) change in which a) _ and it becomes less
othermic chan absorbs of sy	or from its (Heat seems to _ stem is another	to is an example.) change in which a) _ and it becomes less
othermic chan absorbs of system thermic change	or from its (Heat seems to _ stem is another is another	to is an example.) change in which a) _ and it becomes less

Lesson 147: Thermochemistry Notes (cont.)


Chemistry with Lab

• (Heat seems to out of	
-------------------------	--

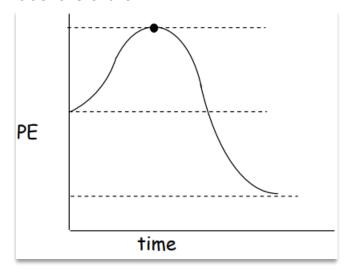
• _____ of system _____ and it becomes _____ stable.

Ex. – Why does your skin feel cool when you get out of the pool?

Think about these steps to answer the question:

Identify the system - ______ goes from liquid (_____ P.E.) to _____ (____ P.E.)

This is an ______ change. In this type of change, the system (the water) _____ heat from the surroundings.


Identify the surroundings - _____

Your skin feels ______ because it _____ heat. The heat was used to the water.

Why do farmers spray fruit on trees with water when the temperature is going to drop below freezing? *Identify the system and surroundings and make the statements about them (as done above)*.

Energy Diagram of Chemical Change:

Label the chart:

As molecules get closer, their electron clouds _____ each other, and their P.E. (increases, decreases)

The _____ complex is

highest point in P.E.

The energy required to reach the

complex is called the _____ energy.

Products are (higher, lower) in P.E. than reactants and are (more, less) stable.

This reaction is _____thermic.

Problem Set #1: Draw the P.E. diagram shown and label the following: reactants, products, activation energy, activated complex, ΔH_r (+ or -)

Products are (higher, lower) in P.E.
than reactants and (more, less)
stable.
This reaction is _____thermic.

When Act E is high, the reaction is (slow, fast)

Lesson 147: Thermochemistry Notes (cont.)

Chemistry with Lab

Sketch a diagram for these reactions:

slow, exothermic	faster, endothermic	faster, exothermic

The Chemistry Quiz

CR1.	CR2.	 _	_	
7 12 1	(1))	,	,	
1 F I	1 6 /	,	7	