Lesson 162: Types of Nuclear Reactions Notes Chemistry with Lab

<u>natural transmutation</u> – Uranium spontaneously decays.

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + {^{4}_{2}He}$$

artificial transmutation - bombardment of a stable isotope to force it to decay.

$${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{1}_{1}p + \underline{\hspace{2cm}}$$

When the bullets are _____ charged, they are _____ by the nucleus they are bombarding. To overcome the repulsions, they must be _____ to very high speeds by _____ accelerators.

nuclear fission – Heavy nuclei are bombarded with neutrons and split.

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{56}^{142}Ba + {}_{36}^{91}Kr + 3({}_{0}^{1}n) + E$$

Mass of particles produced is slightly _____ than the mass of the reactants.

This mass is converted into $\underline{\hspace{1cm}}$ (E = $\underline{\hspace{1cm}}$)

- critical mass: _____ mass of _____

 material required for a ______
- nuclear reactors: control fission ______ reactions to produce energy dangers:

Lesson 162: Types of Nuclear Reactions (cont.) Chemistry with Lab

nuclear fusion – combination of _____ nuclei into ____ with release of

$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + E$$

Mass of particles produced is much _____ than the mass of the reactants.

This mass is converted into _____ (E = ____)

List advantages and problems with using fusion as an energy source: