1. Fill in the table below and then use it to figure out what is happening during each type of decay – alpha, beta, and gamma.

Parent Isotope	Particle Emitted	New, Daughter Isotope	Alpha, Beta, or Gamma Decay?	# of protons lost or gained by "parent"	Change in mass number
$^{226}_{88} Ra \rightarrow ^{4}_{2} He + ^{222}_{86} Rn$			Alpha	Lost 2	Minus 4
$^{214}_{84}Po \rightarrow {}^{4}_{2}He + {}^{210}_{82}Pb$					
$^{47}Ca \rightarrow ^{0}_{-1}e^{-} + ^{47}_{21}Sc$					
$^{148}Ra \rightarrow {}^{4}He + {}^{144}_{62}Sm$					
$^{14}_{6}C \longrightarrow ^{0}_{-1}e^{-} + ^{14}_{7}N$					
$^{148}Gd \rightarrow ^{0}_{0}Y + ^{148}_{64}Gd$					

- 2. What changes take place in the nucleus when an alpha particle is emitted?
- 3. What is the identity of an alpha particle?
- 4. What changes take place in the nucleus when a beta particle is emitted?
- 5. Which particle is associated with beta decay?
- 6. Fill in the missing numbers and elements from these nuclear reactions:

$-^{40}$ $\longrightarrow ^{0}_{-1}e + ^{40}_{20}Ca$	$\longrightarrow {}^{4}He + {}^{226}_{88}Ra$
$_{14}^{35}Si \rightarrow _{-1}^{0}e + _{_{_{_{_{_{_{1}}}}}}}$	$^{238}_{92}U \rightarrow + {}^{4}_{2}He+$

$$^{110}_{53}I \rightarrow _{_{51}}Sb + {_{0}}_{51}Y |_{56}Ba \rightarrow _{_{57}}La$$

- 7. a) Show the alpha decay of radon-198
 - b) Show the beta decay of uranium-237
- 8. Plutonium-244 undergoes gamma decay. What are the products of this reaction?
- 9. Does the identity of an atom change during radioactive decay? Why or why not?
- 10. List the 3 types of radiation (alpha, beta, gamma) in order from least penetrating to most penetrating.
- 11. What is the difference between nuclear fusion and nuclear fission?