Lesson 172: Le Chatelier's Principle/Keg Notes Chemistry with Lab

A reaction in which the		can read	t to form the
	is called a		reaction.
	A + B	C + D	
Chemical		occurs when the	in a
	reaction fo	rm the	at the same
that _		form	·
At equilibrium: • the		of the reactants and	products does not
the concentration	of reactants	s can be to	,, or
the concentration	of the prod	ucts.	
A	+B	C +	D
	K_{eq} :	$=\frac{\left[\begin{array}{cc} \right]^c \left[\begin{array}{cc} \right]^d \\ \end{array}}{\left[\begin{array}{cc} \right]^a \left[\begin{array}{cc} \right]^b \end{array}$	

If K _{eq} is	reaction is favored
= 1	neither
<1	
>1	

Lesson 172: Le Chatelier's Principle/Keg (cont.) Chemistry with Lab

Ex. #1: Calculate K_{eq} for the following reaction using the given equilibrium concentrations. Then determine whether the forward or reverse reaction is favored.

$$N_2O_4 \implies 2NO_2[N_2O_4] = 0.23M [NO_2] = 0.037M$$

Ex. #2: Calculate K_{eq} for the following reaction using the given equilibrium concentrations.

$$N_2 + 3H_2 \implies 2NH_3$$

$$[N_2] =$$
 $[NH_3] =$ $[NH_3] =$

The _____ reaction is favored.

LeChatelier's Principle:

When a ______ is applied to a system in a state of equilibrium, the system reacts in a way to the stress.

Lesson 172: Le Chatelier's Principle/Keg (cont.) Chemistry with Lab

Stress	System Will Shift
addition of a chemical	
removal of a chemical	
increase in temperature	
decrease in temperature	
*increase in pressure	
*decrease in pressure	
addition of a catalyst	

^{*}applies to reactions involving gases only

examples:	$N_2(g) + 3H_2(g) \implies 2NH_3(g) + h_1$	eat
• When H ₂ is	added to the system, the reaction sh	nifts to the
to use up t	the extra H_2 . The amount of	produced will
increase.		
What if	is removed? The reaction	on shifts to the
trying to re	eplenish the N ₂ .	
When the t	temperature increases, the reaction s	hifts to the
• When the p	pressure of the system increases, the	reaction shifts to the
	, toward the side with	particles.
When a cat	talyst is added, there will be	

Lesson 172: Le Chatelier's Principle/Keg (cont.) Chemistry with Lab

When a system in equilibrium...

shifts:	[products]	[reactants]
to the right		
to the left		

The	Che	mistı	rv Oi	uiz
	<u> </u>	<u></u>	7 9	<u> </u>

4. _____ 5. ____

CR1	CR2	1	2	3
	-			