

Grading Sheet: Quarter 1

Chemistry with Lab

Record your scores on the sheet below as the assignments instruct you to do so.

Date	Lesson	Assignment	My Score	Possible Score
	2	Assignment		5
	3	Assignment		10
	4	Self-Assessment (pot. extra credit)		28
	5	Daily Assignment		5
	6	Lab		40
	7	Quiz Me		6
	8	Quiz Me		4
	10	Lab		20
	11	Quiz Me		6
	12	Unit 1 Test (potential extra credit)		45
	16	Daily Assignment		17
	19	Lab		20
	20	Quiz		12
	21	Lab Report		20
	22	Lab		15
	24	Test		32
	27	Assignment (potential extra credit)		7
	29	Self-Assessment		8
	30	Quiz Me		7
	35	Self-Assessment		14
	35	Quiz Me		7
	36	Lab Report		20
	38	Test		74
	40	Quiz Me		9
	43	Quiz Me		13
	44	Chart		20
	45	Quiz Me		22
			TOTAL	

Grading Sheet: Quarter 2

Chemistry with Lab

Record your scores on the sheet below as the assignments instruct you to do so.

Date	Lesson	Assignment	My Score	Possible Score
	47	Lab		50
	49	Test (potential extra credit)		90
	52	Lab		50
	52	Assignment		20
	52	Assignment		10
	54	Assignment		20
	56	Test		44
	61	Assignment		10
	63	Assignment		20
	64	Assignment		10
	68	Test		100
	70	Quiz		5
	72	Lab		50
	74	Assessment		16
	76	Test		21
	76	Test		46
	78	Self Assessment		10
	79	Assignment		10
	83	Assignment		50
	87	Lab		50
	90	Lab		50
			TOTAL	

Grading Sheet: Quarter 3

Chemistry with Lab

Record your scores on the sheet below as the assignments instruct you to do so.

Date	Lesson	Assignment	My Score	Possible Score
	92	Test		46
	94	Assignment		20
	95	Assignment		15
	97	Self-assessment		20
	100	Lab		50
	101	Assignment		10
	107	Test		100
	111	Assignment		10
	116	Test		80
	119	Midterm		20
	124	Lab		50
	126	Assignment		20
	127	Assignment		20
	128	Assignment		5
	130	Test		100
	132	Assignment		10
			TOTAL	

Grading Sheet: Quarter 4

Chemistry with Lab

Record your scores on the sheet below as the assignments instruct you to do so.

Date	Lesson	Assignment	My Score	Possible Score
	139	Lab		64
	140	Lab		25
	141	Assignment		10
	143	Lab		31
	145	Assignment		100
	149	Assignment		20
	151	Assignment		10
	153	Lab		50
	157	Test (potential extra credit)		65
	160	Assignment		10
	163	Assignment		10
	165	Lab		50
	167	Test		100
	170	Assignment		10
	174	Lab		20
	174	Assignment		25
	176	Test (potential extra credit)		46
	179	Final		120
	180	Essay		20
			TOTAL	

Scientific Method:

1. **Scientific method** – a method of research in which a problem is identified, relevant data are gathered, a hypothesis is formulated from these data, and the hypothesis is empirically tested.
2. **Observation** – the act of noting and recording something with instruments.
3. **Hypothesis** – a tentative explanation for an observation or scientific problem that can be tested by further investigation.
4. **Experiment** – a test under controlled conditions that is made to demonstrate a known truth, examine the validity of a hypothesis, or determine the efficacy of something previously untried.
5. **Independent variable (manipulated variable)** – variable whose value is being altered to bring a change in some condition.
6. **Dependent variable (responding variable)** – the observed variable in an experiment or study whose changes are determined by the presence or degree of one or more independent variables.
7. **Controlled variable** – a sample in which a factor whose effect is being estimated is absent or is held constant, in order to provide a comparison.
8. **Conclusion** – a position reached after consideration of data obtained from an experiment.

Measurements and Calculations:

9. **Qualitative data** – data described in terms of some quality or categorization that may be informal or may use ill-defined characteristics such as warmth and flavor.
10. **Quantitative data** – data described in terms of quantity and in which numerical values are used.
11. **Mass** – a property of matter equal to the measure of an object's resistance to changes in either its speed or direction of its motion. The mass of an object is not dependent on gravity and therefore is different from but proportional to its weight.
12. **Volume** – the amount of space occupied by a three-dimensional object or region of space.

Lesson 2: Intro to Chemistry Key Terms (cont.) Chemistry with Lab

13. **Length** – the measurement of the extent of something along its greatest dimension.
14. **Temperature** – a measure of the average kinetic energy of the particles in a sample of matter, expressed in terms of units or degrees designated on a standard scale.
15. **Metric system** – a decimal system of units based on the meter as a unit length, the kilogram as a unit mass, and the second as a unit time.
16. **Scientific notation** – a method of writing or displaying numbers in terms of a decimal number between 1 and 10 multiplied by a power of 10.
17. **Dimensional analysis** – a technique that involves the study of dimensions of physical quantities.
18. **Significant figures** – all of the numbers in a measurement that are known to be accurate plus one that is uncertain.

Lesson 4: Scientific Method

Chemistry with Lab

A _____ of _____
_____.

Steps of the Scientific Method:

1. Making _____ that lead to a _____.
2. Forming a _____ to answer the _____.
3. Testing the _____ by _____.
4. Making a _____ based on the results of the _____.

Definitions:

Observing: use of the _____ and _____ in the lab to
_____.

Conclusion: a statement based on _____ and prior _____.

Observations vs. Conclusions:

1. _____ 2. _____ 3. _____ 4. _____
5. _____ 6. _____ 7. _____ 8. _____

Observations:

Quantitative

Includes _____
and _____.

Qualitative

Does _____ include
_____ and units.

Lesson 4: Scientific Method (cont.)

Chemistry with Lab

Qualitative vs. Quantitative:

1. _____ 2. _____ 3. _____ 4. _____

5. _____ 6. _____ 7. _____ 8. _____

Hypothesis: an _____.

A good hypothesis:

1. _____ an _____

2. can be _____

3. will _____ an _____

Practice forming a hypothesis:

1. What is the _____ of the _____?

2. As the candle _____, it gets _____. Where does the _____ go?

Experiment:

1. is _____ to _____ a _____

2. involves _____

3. is performed under _____

Variables: factors that can be _____.

Control: a _____ that is held _____.

Lesson 4: Scientific Method (cont.)

Chemistry with Lab

In a good experiment:

1. only _____ are allowed to _____.
2. the _____ (or _____) _____ is changed by the _____.
3. the _____ (or _____) _____ changes as a result of the _____.
4. all other _____ are _____ because they are held _____.

The Chemistry Quiz:

1. _____
2. _____
3. _____
4. _____
5. _____

Lesson 7: Scientific Notation

Chemistry with Lab

**$M \times 10^n$
 $1 \leq M < 10$**

Are the following in correct form? Write C for correct or I for incorrect.

9.2 $\times 10^2$ _____

0.4 $\times 10^{-14}$ _____

1.8 $\times 2^5$ _____

860 $\times 10^{-3}$ _____

9.898989887 $\times 10^1$ _____

Problem Set One – Change from scientific notation to decimal notation:

a.

b.

c.

d.

e.

Problem Set Two – Change from decimal notation to scientific notation:

a.

b.

c.

d.

e.

The Chemistry Quiz:

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____ 4. _____

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry_SHARED_17/Chemistry_IntroToChemistry_SHARED/Module_1_Scientific_Notation_Note_Taking_Guide.pdf])

Lesson 8: Scientific Measurement

Chemistry with Lab

International System (_____)

_____ **system used in** _____

AKA _____

Length - _____ between _____

Base unit - _____ (_____)

Instrument - _____

Mass - _____ of _____ in a _____

Base unit - _____ (_____)

Instrument - _____

Volume - _____ of _____ an object _____

Base unit - _____ (_____)

Instrument - _____ ruler or _____

Temperature - average _____

Base unit - _____ (____) or _____ (____)

Instrument - _____

Lesson 8: Scientific Measurement (cont.)

Chemistry with Lab

Measuring example:

Width of a textbook = _____

A measurement includes both a _____ and a _____!

Significant Figures - _____ numbers plus one _____
number

Examples of volume measurements:

Volume of liquid = _____

Volume of solid

Rectangular solid – $V =$ _____

Volume of cube = _____

Volume of rectangular solid = _____

Irregular solid - _____

Practice Problems:

Volume of the rock

Volume of rectangular solid

Lesson 8: Scientific Measurement (cont.)

Chemistry with Lab

Volume of rectangular solid using water displacement

$$\underline{\hspace{2cm}} \text{cm}^3 = \underline{\hspace{2cm}} \text{mL}$$

The Chemistry Quiz:

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____ 4. _____

Lesson 9: Metric Conversions

Chemistry with Lab

Metric Prefixes

One _____ thing equals _____ things

Prefix	Abbreviation	One smaller =	Many larger
centi-		1 g =	
kilo-		1 kg =	
Mega-		1 Mg =	
deci-		1 g =	
milli-		1 g =	
micro-		1 g =	

Prefix Questions

1. _____ m = 1 km
2. _____ km = 1 m
3. Which is larger? milliliter or centiliter
4. Which is larger? kilogram or megagram
5. Which is larger? millimeter or kilometer
6. a penny = 1 _____ dollar
7. a dime = 1 _____ dollar
8. a megabuck = _____ dollars
9. a kilopenny = _____ dollars

Lesson 9: Metric Conversions (cont.)

Chemistry with Lab

Prefix and Base Unit Questions

1. _____
2. _____
3. _____
4. _____
5. _____

Conversions

Convert 152 cm to m

Conversion factor: a _____ of fact expressed as a _____
equaling _____

Fact: $1 \text{ m} = 100 \text{ cm}$

$$\frac{1 \text{ m}}{100 \text{ cm}} \quad \frac{100 \text{ cm}}{1 \text{ m}}$$

Convert _____ kg to grams

Convert _____ μs to ds

$$\text{_____ mm} = \text{_____ km}$$

Lesson 9: Metric Conversions (cont.)

Chemistry with Lab

Problem Set One

- 1.
- 2.
- 3.
- 4.
- 5.

How many yards are in _____ km?

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 13: Matter Key Terms

Chemistry with Lab

Chemical and Physical Properties and Changes:

1. **Physical property** – property of a compound that can change without involving a change in chemical composition; examples are the melting point and boiling point.
2. **Chemical property** – any of a chemical's properties that become evident during a chemical reaction; examples are reactivity and flammability.
3. **Physical change** – any change not involving a change in the substance's chemical identity. Includes a change from one state (solid or liquid or gas) to another without a change in chemical composition.
4. **Chemical Change** – any process determined by the atomic and molecular composition and structure of the substances involved.

Classification of Matter:

5. **Element** – a substance composed of atoms having an identical number of protons in each nucleus. Elements cannot be reduced to simpler substances by normal chemical means.
6. **Pure substance** – a sample of matter, either an element or a compound, that consists of only one component with definite physical and chemical properties and a definite composition.
7. **Compound** – a pure, macroscopically homogeneous substance consisting of atoms or ions of two or more different elements in definite proportions that cannot be separated by physical means. A compound usually has properties unlike those of its constituent elements.
8. **Mixture** – a composition of two or more substances that are not chemically combined with each other and are capable of being separated.
9. **Solution** – a homogeneous mixture of two or more substances, which may be solids, liquids, gases, or a combination of these.
10. **Heterogeneous** – consisting of dissimilar parts. Heterogeneous mixtures have distinguishable phases.
11. **Homogeneous** – uniform in structure or composition throughout. Homogeneous mixtures have atoms and molecules interspersed.

Lesson 13: Matter Key Terms (cont.)

Chemistry with Lab

12. **Alloy** – a homogeneous mixture or solid solution of two or more metals, the atoms of one replacing or occupying interstitial positions between the atoms of the other: Brass is an alloy of zinc and copper.
13. **Distillation** – the evaporation and subsequent collection of a liquid by condensation as a means of purification.
14. **Density** – the mass per unit volume of a substance. Commonly measured in grams per milliliter (g/mL) or grams per cubic centimeter (g/cm³).

Lesson 13: Study of Matter

Chemistry with Lab

Definitions of Properties

Physical properties can be _____ without _____
_____ matter.

Chemical properties describe how a _____
with other _____.

Examples of Properties

Physical Properties

Chemical Properties

Phases of Matter

	Shape	Volume	Particles
Solids			
Liquids			
Gasses			

Lesson 13: Study of Matter (cont.)

Chemistry with Lab

Types of Changes

Physical change - _____ in _____ of substance

Chemical change - _____ or more _____ substances produced

Phase changes are _____

Freezing point - _____ to _____

Melting point - _____ to _____

_____ point = _____ point

Boiling point - _____ to _____

Condensation point - _____ to _____

Sublimation point - _____ to _____

Examples of Changes

Physical Changes

Chemical Changes

Lesson 13: Study of Matter (cont.)

Chemistry with Lab

Law of Conservation of Mass: Mass _____ be _____
_____.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 15: Classification of Matter

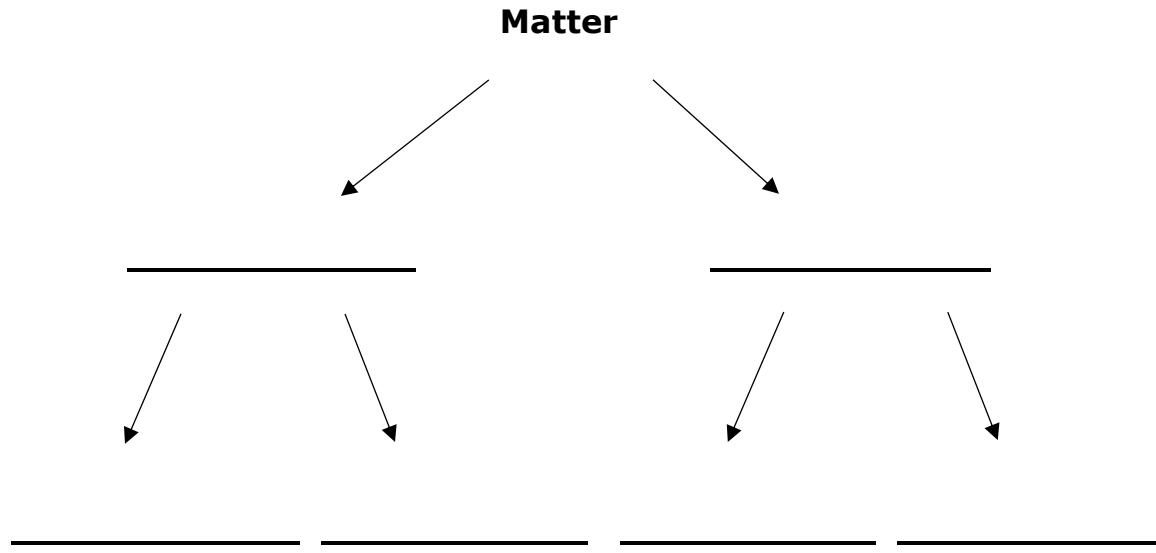
Chemistry with Lab

Types of Matter

Element - _____ substance

- _____ kind of _____
- represented by _____ or _____ letter symbol
- example: _____ (____)

Compound - _____ or more _____ combined


- represented by _____
- example: _____ (____)
- H_2O _____ into _____ and _____
- _____ in same _____

Mixture - _____ or more substances _____

- do not _____ in same _____
- heterogeneous mixture - not _____
- homogeneous mixture (solution) - _____
 - alloy - _____ of two or more _____
 - Pure _____ are _____

Lesson 15: Classification of Matter (cont.)

Chemistry with Lab

E - element
C - compound

S - homogeneous mixture/solution
HE - heterogeneous mixture

hydrogen peroxide _____

carbon _____

carbon dioxide _____

carbon monoxide _____

pizza _____

steel _____

salad dressing _____

calcium _____

rust _____

lead _____

apple juice _____

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 17: Separation of Mixtures

Chemistry with Lab

The components of a mixture may be separated based on the physical properties of _____

_____ (An instrument that uses this property to separate mixtures when tiny solid particles are dissolved in a liquid is called a _____.)

Some techniques used to separate the components of a mixture are:

_____ - used to separate liquids and solids

_____ } used to separate solutions

Observation

Explanation

1. _____

2. _____

3. _____

Lesson 17: Separation of Mixtures (cont.)

Chemistry with Lab

Density - _____ per unit of _____

Density =

(D= _____)

common units for density: _____, _____

Example problem: Suppose we have an object with a mass of _____ grams and a volume of _____ mL. What would be the density of this object?

Problem Set One

1.

2.

3.

Problem Set Two

1.

2.

3.

Lesson 17: Separation of Mixtures (cont.)

Chemistry with Lab

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 18: Virtual Lab: Metal Densities

Chemistry with Lab

DATA TABLE:

	Metal A	Metal B	Metal C
Mass of Empty Graduated Cylinder (g)			
Mass of Graduated Cylinder + Metal (g)			
Mass of Metal (g)			
Volume of Metal Sample (mL)			
Density (g/mL)			

Calculations:

Mass of Metal = Mass of Graduated Cylinder + Metal – Mass of Empty Graduated Cylinder

Metal A:

Metal B:

Metal C:

Lesson 18: Virtual Lab: Metal Densities (cont.)

Chemistry with Lab

Density = Mass of Metal / Volume of Metal Sample

Metal A:

Metal B:

Metal C:

Questions:

Using the values given in the Problem Description, and comparing those values to the density you calculated in your data table, what is the identity of each metal?

1. Metal A:
2. Metal B:
3. Metal C:
4. If the metals were not in powdered form (perhaps, pellets), what would be an alternative way of finding volume?

Lesson 25: Atomic Theory Key Terms

Chemistry with Lab

1. **Democritus** – (born c. 460 — died c. 370 BC) Greek philosopher. Though only a few fragments of his work survive, he was apparently the first to describe invisible “atoms” as the basis of all matter. His atoms — indestructible, indivisible, incompressible, uniform, and differing only in size, shape, and motion — anticipated with surprising accuracy those discovered by 20th-century scientists.
2. **Atom** – A unit of matter, the smallest unit of an element having all the characteristics of that element and consisting of a dense, central, positively charged nucleus surrounded by a system of electrons.
3. **Atomos** – Greek word meaning indivisible or not able to be cut.
4. **Aristotle** – Greek philosopher who did not follow the teachings of Democritus. He believed in the four earthly elements (fire, earth, air, and water), and proposed a fifth heavenly element (aether).
5. **Dalton** – (born 1766 - died 1844) English scientist who was one of the first to decide that all matter is made up of small particles, or atoms.
6. **Law of Conservation of Mass** – The notion that mass, or matter, can be neither created nor destroyed. According to conservation of mass, reactions and interactions which change the properties of substances leave unchanged their total mass; for instance, when charcoal burns, the mass of all of the products of combustion, such as ashes, soot, and gases, equals the original mass of charcoal and the oxygen with which it reacted.
7. **Law of Definite Proportions** – elements composing a compound are always present in the same proportions by mass.
8. **Law of Multiple Proportions** – law stating that when two elements can combine to form more than one compound the amounts of one of them that combines with a fixed amount of the other will exhibit a simple multiple relation.
9. **Rutherford** – (born 1871 - died 1937) New Zealand physicist who named the nucleus and proton and won the 1908 Nobel prize in chemistry.
10. **Nucleon** – A proton or a neutron, especially as part of an atomic nucleus.
11. **Proton** – A stable, positively charged subatomic particle having a mass 1,836 times that of the electron.
12. **Neutron** – An electrically neutral subatomic particle having a mass 1,839 times that of the electron.

Lesson 25: Atomic Theory Key Terms (cont.)

Chemistry with Lab

13. **Electron** – A stable subatomic particle having a rest mass of 9.1066×10^{-28} grams and a unit negative electric charge of approximately 1.602×10^{-19} coulombs.
14. **Isotope** – One of two or more atoms having the same atomic number, but different mass numbers, due to a different number of neutrons in the nucleus.
15. **Mass number** – The sum of the number of neutrons and protons in an atomic nucleus.
16. **Photon** – The quantum of electromagnetic energy, regarded as a discrete particle having zero mass, no electric charge, and an indefinitely long lifetime.
17. **Spectroscopy** – Study of spectra, especially experimental observation of optical spectra.
18. **Quantum number** – A set of real numbers assigned to a physical system that individually characterize the properties and collectively specify the state of a particle or of the system.
19. **Orbital** – The wave function of an electron in an atom or molecule, indicating the electron's probable location.
20. **Sublevel** – One or more orbitals in the electron shell of an atom.
21. **Hund's Rule** – If two or more orbitals of equal energy are available, electrons will occupy them singly before filling them in pairs.
22. **Pauli Exclusion Principle** – No two electrons may simultaneously occupy the same quantum state.
23. **Aufbau Principle** – Used to determine the electron configuration of an atom, molecule, or ion. The principle postulates a hypothetical process in which an atom is "built up" by progressively adding electrons. As they are added, they assume their most stable conditions (electron orbitals) with respect to the nucleus and those electrons already there. According to the principle, electrons fill orbitals starting at the lowest available (possible) energy states before filling higher states (e.g. 1s before 2s).

Lesson 25: Atomic Theory Notes

Chemistry with Lab

Model: A _____ idea used to explain _____ facts in _____.

Theory: An _____ of _____ facts and _____.

To remain valid, models and theories must:

- _____ all known _____
- enable _____ to make correct _____

Democritus:

- proposed the _____ of an _____
- word comes from the _____ word _____ which means
_____ or "indivisible"

Aristotle:

- _____ the _____ of the _____
- said _____ could be _____

Dalton's theory proposed that atoms:

- are _____ of _____
- are _____
- of the _____ are _____
- of _____ are _____
- _____ in _____, _____ ratios to form _____

Lesson 25: Atomic Theory Notes (cont.)

Chemistry with Lab

J.J. Thomson

- credited with _____ of _____: a blow to _____ atom
- proposed the _____ model of the _____:
_____ charged _____ embedded in a ball of

Rutherford's Gold-foil Experiment:

- aimed _____ at _____
- _____ passed _____
- a _____ particles were _____
- _____ particles even _____

Conclusions of Rutherford's experiment:

- _____ of the _____ is _____
- _____ charged _____

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 25: Periodic Table

Chemistry with Lab

Periodic Table of the Elements

Group → 1 ↓ Period	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H																2 He	
2 Li	3 Be															5 B	6 C
3 Na	11 Mg															7 N	8 O
4 K	19 Ca	20 Sc	21 Ti	22 V	23 Cr	24 Mn	25 Fe	26 Co	27 Ni	28 Cu	29 Zn	30 Ga	31 Ge	32 As	33 Se	34 Br	35 Kr
5 Rb	37 Sr	38 Y	39 Zr	40 Nb	41 Mo	42 Ru	43 Tc	44 Rh	45 Pd	46 Ag	47 Cd	48 In	49 Sn	50 Sb	51 Te	52 I	54 Xe
6 Cs	55 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7 Fr	87 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
Lanthanides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
Actinides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Am	95 Cm	96 Bk	97 Cf	98 Es	99 Fm	100 Md	101 Fm	102 No	103 Lr		

Lesson 29: Structure of the Atom Notes

Chemistry with Lab

Nucleons: _____ in the _____ of _____.

Atomic Number: _____ of _____ in the _____ of an _____.

Neutral atom: # of _____ (+) = # of _____ (-)

Isotope: _____ of an _____ that have _____ of _____.

Isotopes of Hydrogen:

Hydrogen-1

- _____ proton and _____ neutrons

Hydrogen-2

- _____ proton and _____ neutrons

Hydrogen-3

- _____ proton and _____ neutrons

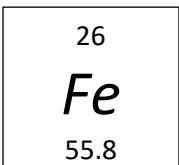
Mass Number: _____ number of _____ and _____ in an _____.

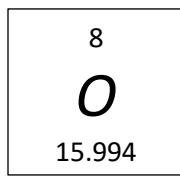
Example: Carbon-14 _____ Neon-20 _____

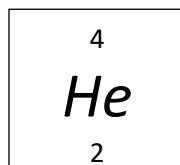
Particle	Charge	Mass	Location
Proton			
Neutron			
Electron			

Lesson 29: Structure of the Atom Notes (cont.)

Chemistry with Lab


Atomic Mass: _____ of the _____ of all the element's _____.


Subatomic Particles


of protons = _____

of electrons = _____

of neutrons = _____ - _____

iron: _____ protons
_____ electrons
_____ neutrons

oxygen-17: _____ protons
_____ electrons
_____ neutrons

helium: _____ protons
_____ electrons
_____ neutrons

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 29: Atomic Structure

Chemistry with Lab

1. The atomic number tells the number of positively charged _____ in the nucleus of an atom. The atom is _____ because this is also the number of _____ charged _____ in the atom.
2. The mass number tells the total number of _____ and _____ in the nucleus of an atom. These particles collectively are called _____ since both are located in the nucleus.
3. Isotopes are atoms of the same element with different numbers of _____ which results in different _____ numbers.
4. Write the hyphen notation of the three isotopes in hydrogen:
 - a.
 - b.
 - c.
5. Fill in the following chart with the missing numbers or symbols. (Hint: Isotopes may have different masses than the periodic table lists!):

Symbol	Atomic	Mass	Protons	Electrons	Neutrons
Hg	80	201			
Mo	42	96			
	29			29	35
C		14			
	15	31			
Pb		208	82		
Na	11				12

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry/atomic_theory_shared/index.html)

Lesson 30: Isotope Problems

Chemistry with Lab

1. A student looked up the naturally occurring isotopes of bromine and found the following information:

50.54% of the naturally occurring isotopes of bromine have an atomic mass of 78.92 u while 49.46% of the naturally occurring isotopes of bromine have an atomic mass of 80.92 u.

Calculate the average atomic mass of bromine, showing all work:

2. Using the following data, calculate the average atomic mass of magnesium (give your answer to the nearest .01 u). Show all work!

Isotope: $^{24}_{12}\text{Mg}$ Percent abundance: 78.70%

Isotope: $^{25}_{12}\text{Mg}$ Percent abundance: 10.13%

Isotope: $^{26}_{12}\text{Mg}$ Percent abundance: 11.17%

3. Using the periodic table:

What is the average atomic mass of bromine? _____

What is the average atomic mass of magnesium? _____

How do your calculated answers in #1 and #2 compare to those on the periodic table?

Lesson 31: Electrons in the Atom Notes

Chemistry with Lab

Bohr's Energy Levels

- Electrons in _____
- _____ energy levels: _____ to _____
- _____ energy levels: _____ from _____
- Ground State: _____ in _____
_____ possible

Excited Atom

- Atom has _____
- _____ state is _____
- _____ soon _____ same amount of _____
- _____ seen as _____

Wave Description of Light:

Wavelength (_____): _____ between _____
on _____ waves

Frequency (_____): the _____ of _____ passing a given
_____ in a given _____

c = _____

c = _____: speed of _____

Lesson 31: Electrons in the Atom Notes (cont.)

Chemistry with Lab

Sample problem 1:

What is the frequency of light if the wavelength is $6.0 \times 10^{-7}\text{m}$?

Sample problem 2:

What is the wavelength of light if its frequency is $5.0 \times 10^{14}\text{ Hz}$?

Particle Description of Light

_____ exists as _____ called _____

$E =$ _____

The Modern View of Light

_____ has a _____

- Light may _____ as a _____
- Light may _____ as a _____ of _____ called _____
_____ or _____

Spectroscopy

- _____ lines represent _____ as _____
returns to _____

Lesson 31: Electrons in the Atom Notes (cont.)

Chemistry with Lab

- _____ lines _____ an _____
- Called the _____ _____ _____ of an _____

Orbital

_____ of _____ where an _____ is _____
to be _____

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 33: Electron Distribution Notes

Chemistry with Lab

Quantum Numbers

- _____
- Used to _____ an _____ in an _____

n

- _____
- Represents _____ energy level of _____
_____ # of _____ in an
_____ = _____

Example: What is the maximum number of electrons that can be in the
_____ main energy level?

l

- The _____
- Describes the _____ within an _____

- _____ of orbital _____ possible in _____
_____ = _____

Lesson 33: Electron Distribution Notes (cont.)

Chemistry with Lab

Orbital Shapes

designated _____

- level 1: _____
- level 2: _____
- level 3: _____
- level 4: _____

How many electrons can each sublevel hold?

$s = 1 \text{ orbital} \times 2 \text{ e/orbital} = \text{_____ e}$

$p = 3 \text{ orbitals} \times 2 \text{ e/orbital} = \text{_____ e}$

$d = 5 \text{ orbitals} \times 2 \text{ e/orbital} = \text{_____ e}$

$f = 7 \text{ orbital} \times 2 \text{ e/orbital} = \text{_____ e}$

m

- The _____
- describes _____ of _____ in _____

s

- The _____
- describes _____ of _____ in _____

Lesson 33: Electron Distribution Notes (cont.)

Chemistry with Lab

Ground State: _____ energy arrangement of _____

Diagonal Rule:

Examples:

hydrogen _____ lithium _____

nitrogen _____

Orbital Notation:

Examples:

hydrogen

nitrogen

Lesson 33: Electron Distribution Notes (cont.)

Chemistry with Lab

Hund's Rule:

_____ of _____ are each _____

by one _____ before any _____ is occupied by a

_____.

Pauli Exclusion Principle:

No two _____ in the _____ can have the

_____ of _____

_____.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 33: Energy Levels Chart

Chemistry with Lab

Energy Level <i>n</i>	E Sublevel (type of orbital)	# of Orbitals in Sublevel	# of e ⁻ in Sublevel	Total # of e ⁻ in E level (2n ²)
1				
2				
3				
4				

Lesson 35: Electron Distribution Worksheet

Chemistry with Lab

Each orbital can hold a maximum of _____ electrons.

Since both electrons have a _____ charge, they _____.

What keeps them from flying apart? Each electron _____ on its axis.

One spins _____ and the other spins counter-clockwise. When

charged particles spin, they act like tiny magnets. Since the two electrons spin in _____ directions, one acts like the north pole of a magnet and the other acts like the south pole.

This makes the electrons _____.

Since each orbital can hold _____ electrons:

The "s" sublevel can hold _____ electrons.

The "p" sublevel can hold _____ electrons.

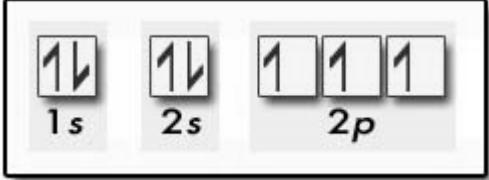
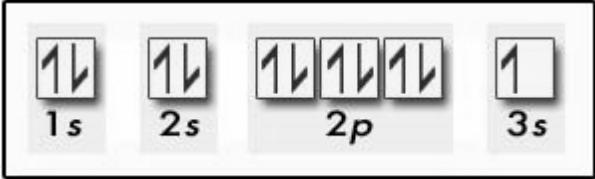
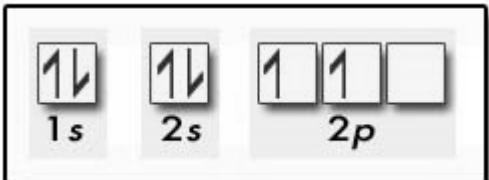
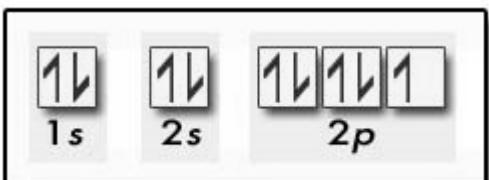
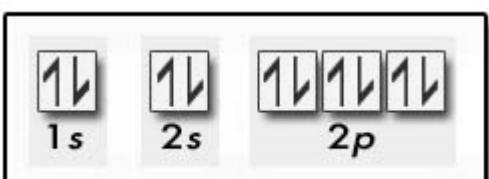
The "d" sublevel can hold _____ electrons.

The "f" sublevel can hold _____ electrons.

The orbital shaped like a "dumbbell" is the _____ orbital, while the

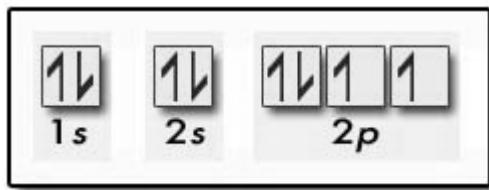
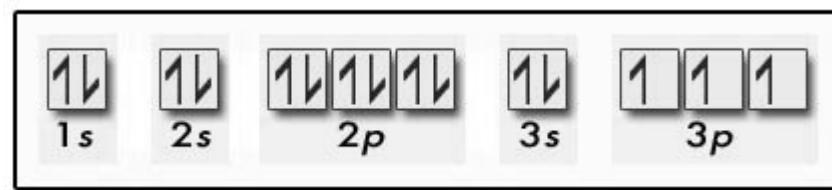
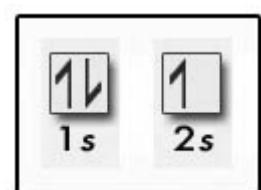
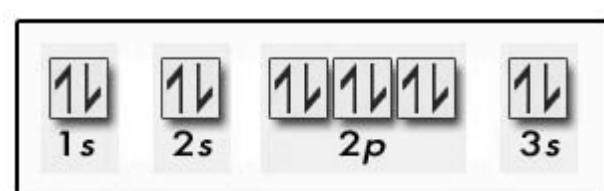
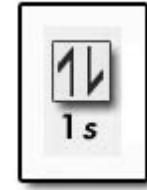
orbital shaped spherically is the _____ orbital.

How many sublevels are present in the third main energy level? _____






What is the maximum number of orbitals in the "d" sublevel? _____

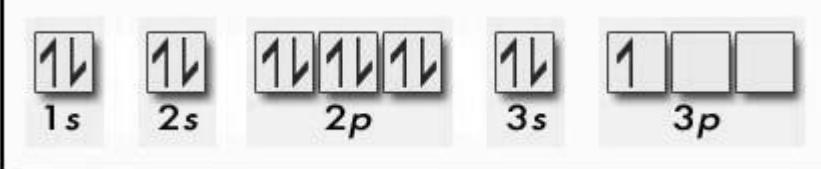
The maximum number of electrons that can occupy an orbital is _____, provided they have _____ spins.

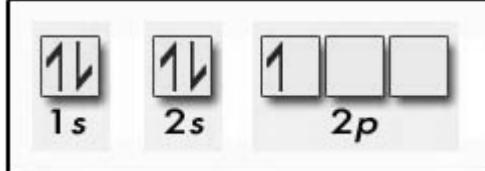
The likely location of an electron within the atom is a(n) _____.






Lesson 35: Orbital Diagram Chart

Chemistry with Lab

Element	Orbital Diagram
	<p>Orbital Diagram for Hydrogen (H) showing 1s orbital with 1 electron.</p>
	<p>Orbital Diagram for Helium (He) showing 1s, 2s, and 2p orbitals. The 1s orbital has 1 electron, the 2s orbital has 1 electron, and the 2p orbital has 3 electrons (one in each of the three 2p sub-orbitals).</p>
	<p>Orbital Diagram for Lithium (Li) showing 1s, 2s, and 2p orbitals. The 1s orbital has 1 electron, the 2s orbital has 1 electron, and the 2p orbital has 1 electron (one in the 2p1 sub-orbital).</p>
	<p>Orbital Diagram for Beryllium (Be) showing 1s, 2s, and 2p orbitals. The 1s orbital has 1 electron, the 2s orbital has 1 electron, and the 2p orbital has 2 electrons (one in each of the 2p0 and 2p2 sub-orbitals).</p>
	<p>Orbital Diagram for Boron (B) showing 1s, 2s, and 2p orbitals. The 1s orbital has 1 electron, the 2s orbital has 1 electron, and the 2p orbital has 3 electrons (one in each of the 2p0, 2p1, and 2p2 sub-orbitals).</p>




Lesson 35: Orbital Diagram Chart (cont.)

Chemistry with Lab

Element	Orbital Diagram
	<p>1s 2s 2p</p>
	<p>1s 2s 2p 3s 3p</p>
	<p>1s 2s</p>
	<p>1s 2s 2p 3s</p>
	<p>1s</p>

Lesson 35: Orbital Diagram Chart (cont.)

Chemistry with Lab

Element	Orbital Diagram

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry/atomic_theory_shared/orbital_diagram_printable.pdf)

Lesson 39: Periodic Table Key Terms

Chemistry with Lab

1. **Mendeleev** – (born 1834— died 1907) Russian chemist who created the first valid periodic table of the elements in 1869
2. **Moseley** – (born 1887— died 1915) English physicist who used X-ray diffraction to show that each element has an atomic number. He arranged the elements by increasing atomic number, which was almost the same as Mendeleev's arrangement in order of increasing atomic weight, but differs slightly. These differences account for the few discrepancies inherent in the Mendeleev system. He was killed in World War I.
3. **Periodic law** – The principle that the properties of the elements recur periodically as their atomic numbers increase.
4. **Family** – A vertical column in the periodic table of elements.
5. **Group** – A vertical column in the periodic table of elements.
6. **Period** – A sequence of elements arranged in order of increasing atomic number and forming one of the horizontal rows in the periodic table.
7. **Electron distribution** – A function which gives the number of electrons per unit volume of phase space.
8. **Valence electron** – An electron in an outer shell of an atom that can participate in forming chemical bonds with other atoms.
9. **Noble gas distribution** – A short hand of electron distribution. Constructed by putting the symbol of the noble gas in the period before the element in brackets and continuing the electron configuration from where the noble gas left off.
10. **Energy level** – One of the allowed values of the internal energy of an isolated physical system.
11. **Stable** – Not easily decomposed or otherwise modified chemically.
12. **Metalloid** – An element which exhibits the external characteristics of a metal but behaves chemically both as a metal and a nonmetal.
13. **Semimetal** – Another name for an element which exhibits the external characteristics of a metal but behaves chemically as a metal and a nonmetal.
14. **Atomic radius** – Half the distance between the nuclei of two like atoms that are covalently bonded.
15. **Electron affinity** – The work needed in removing an electron from a negative ion, thus restoring the neutrality of an atom or molecule.

Lesson 39: Periodic Table Key Terms (cont.)

Chemistry with Lab

16. **Ionization energy** – The amount of energy needed to remove an electron from a given kind of atom or molecule to an infinite distance.
17. **Electron configuration** – The orbital and spin arrangement of an atom's electrons, specifying the quantum numbers of the atom's electrons in a given state.

Lesson 39: History of the Periodic Table Notes

Chemistry with Lab

Dmitri Mendeleev

- Arranged elements by _____
- predicted _____ of missing _____

Henry Moseley

- discovered that each _____ has a unique _____

- arranged elements by _____

- now all elements fit into place based on properties

Modern Periodic Law

- Properties of elements _____ when elements are arranged by

Questions about the extended periodic table

Why do you think these elements get pulled out?

Which element is in a different column than we are used to?

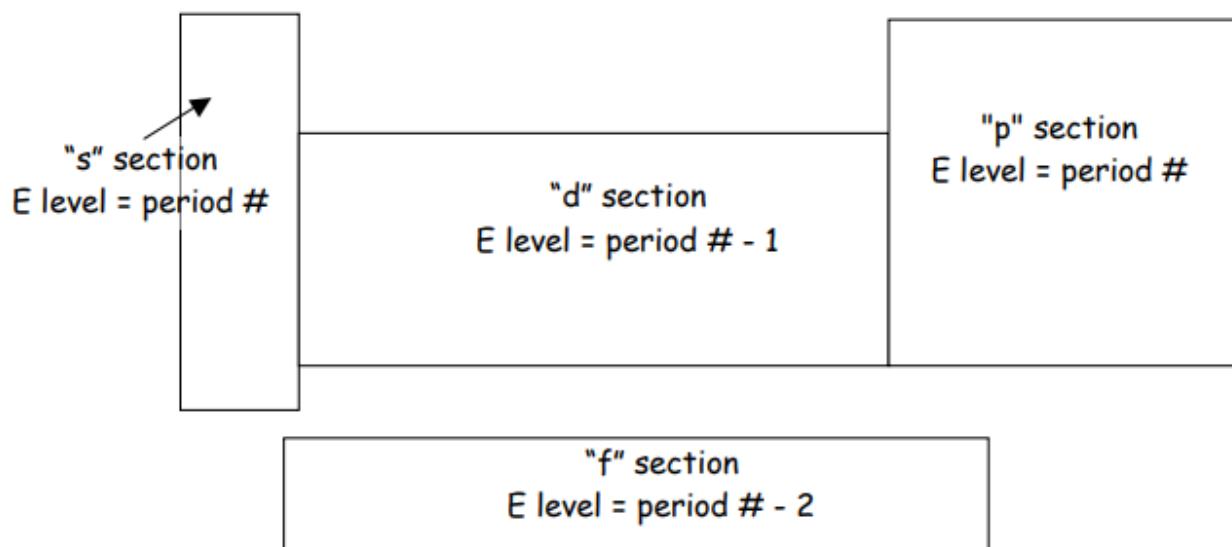
What happens to the number of the energy level as you begin each new row?

What is the similar characteristic in each column?

Lesson 39: Periodic Table Notes (cont.)

Chemistry with Lab

Elements in the same column


- have similar _____
- have same number of _____
- have similar _____
- Electron distribution for Ne: _____

Kr: _____

Noble Gases

- have _____ outer _____
- have _____ valence _____
- are _____

Using periodic table to find electron distributions

Lesson 39: Periodic Table Notes (cont.)

Chemistry with Lab

Noble Gas Distributions – Find noble gas on end of row before the element and put its symbol in brackets.

Use diagonal rule to write electron distribution of Sn (atomic no. 50):

Use noble gas distribution to write electron distribution of Sn:

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 41: Organization of the Periodic Table

Chemistry with Lab

Period

- _____ on _____
- tells _____

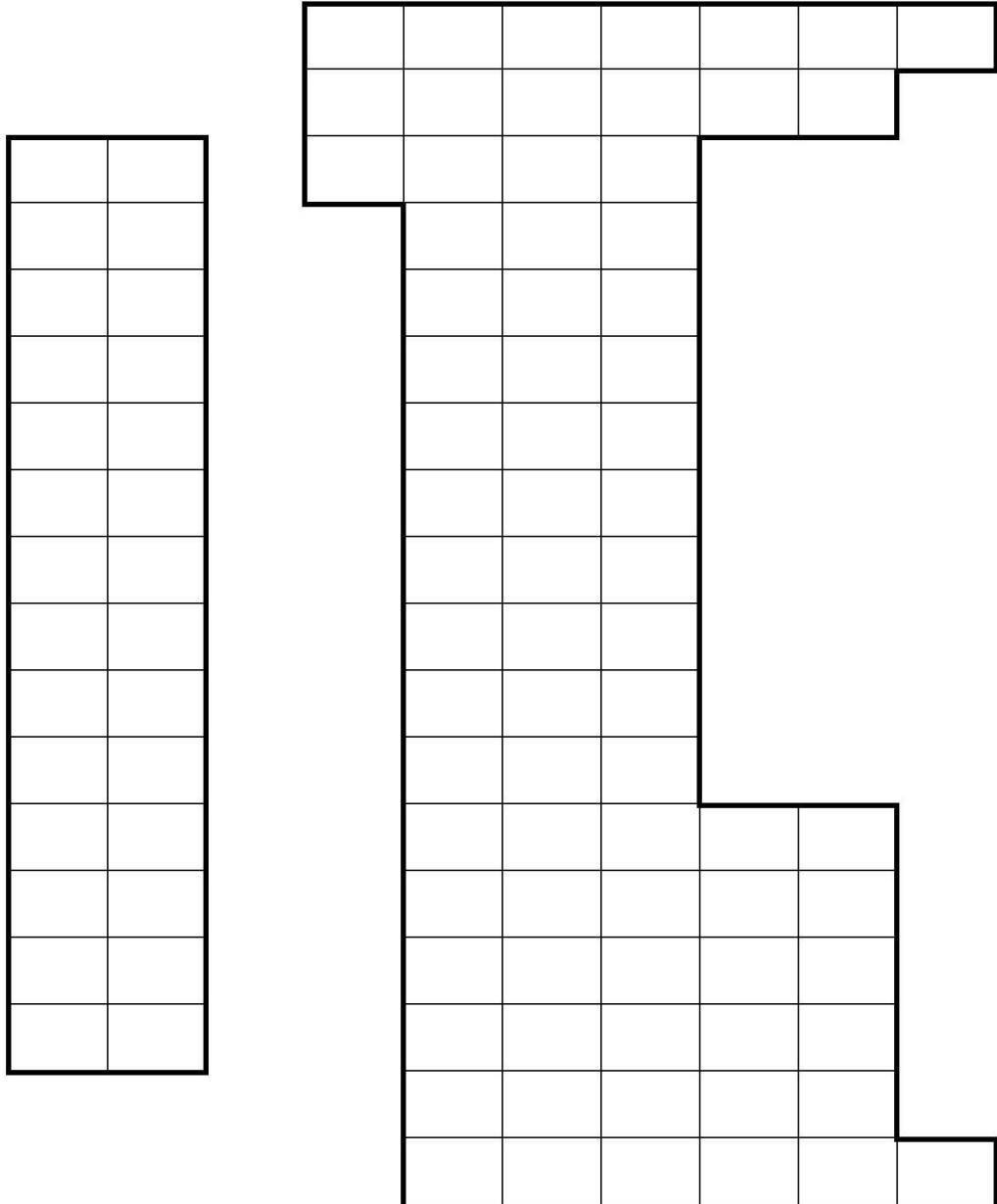
Family

- _____ on the _____
- for columns 1-2 and 13-18, the number in the one's place represents number of _____

Metalloids

- have properties of both _____ and _____
- border _____ line (except Al, which is a _____)

The Chemistry Quiz


CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 41: Blank Periodic Table

Chemistry with Lab

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry/periodic_table_shared/Module_4_Bank_Periodic_Table.pdf)

Lesson 42: Matching Activity

Chemistry with Lab

A family

A row on the periodic table

A period

An element that shares characteristics of both metals and non-metals

A metalloid

A column on the periodic table

Family that contains Bromine

Alkaline earth metals

Family that contains Argon

Actinides

Family that contains Beryllium

Halogens

Family that contains Uranium

Noble gases

Te 8 valence electrons

P 6 valence electrons

Bi 2 valence electrons

Sn 4 valence electrons

S 5 valence electrons

Al 3 valence electrons

Ne 6 valence electrons

Cs 1 valence electron

Br 5 valence electrons

Mg 7 valence electrons

Lesson 44: Trends on the Periodic Table

Chemistry with Lab

Atomic Number

- _____ across a period
- _____ down a family

Atomic Mass

- _____ across a period
- _____ down a family

Atomic Radius

- _____ the distance between _____ of two like _____.
- _____ across a period (due to increased attraction of more positive nuclei to electron clouds)
- _____ down a family (due to addition of an energy level)

Electron Affinity

- amount of _____ when an _____ gains an _____
- _____ across a period
- _____ down a family

Ionization Energy

- amount of _____ required to _____ an _____ from a neutral _____
- _____ across a period
- _____ down a family

Lesson 44: Trends on the Periodic Table (cont.)

Chemistry with Lab

Electron Distribution – Forming Ions

- Atoms become ions by _____ or _____ electrons to become _____
- An atom is stable when it has a _____ outer energy level (_____ valence electrons)
- Atoms that lose (give away) electrons become _____ charged ions.
Atoms that gain (steal) electrons become _____ charged ions.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 44: Predicting Ionic Charges

Chemistry with Lab

Atom			Ion		
element	# of protons	# of electrons	ending electron distribution	# of valence e-	family #
Li	<u> </u> P+	<u> </u> e-			lose/gain <u> </u> e-
Be	<u> </u> P+	<u> </u> e-			lose/gain <u> </u> e-
B	<u> </u> P+	<u> </u> e-			lose/gain <u> </u> e-
C	<u> </u> P+	<u> </u> e-			lose/gain <u> </u> e-
N	<u> </u> P+	<u> </u> e-			lose/gain <u> </u> e-
O	<u> </u> P+	<u> </u> e-			lose/gain <u> </u> e-
F	<u> </u> P+	<u> </u> e-			lose/gain <u> </u> e-
Ne	<u> </u> P+	<u> </u> e-			lose/gain <u> </u> e-

Lesson 47: Graphical Comparison Lab

Chemistry with Lab

In this activity, you will explore the trends of atomic radius vs. atomic number and ionization energy vs. atomic number. Using the table of values below, construct two graphs using Graphical Analysis showing the property vs. atomic number. Allow the program to connect the points in a dot-to-dot manner. Do NOT use the regression line or best fit curve keys on these graphs.

As an alternate graph, you could put the two graphs on one by using the GA program and ADDING A NEW DATA SET with the second set of data. If you do this, you will have to double-click on the graph after both sets of data have been entered. Then, click on AXES OPTIONS and click on the + sign next to the second data set. Open it up and click the second axis in that set. (The checked box should agree with Data Set 1.) Close this window.

Element Symbol	Atomic Number	Atomic Radius (Angstroms)	Ionization Energy (Volts)
H	1	0.79	13.6
He	2	0.49	24.587
Li	3	2.05	5.392
Be	4	1.4	9.322
B	5	1.17	8.298
C	6	0.91	11.26
N	7	0.75	14.534
O	8	0.65	13.618
F	9	0.57	17.422
Ne	10	0.51	21.564
Na	11	2.23	5.139
Mg	12	1.72	7.646
Al	13	1.82	5.986
Si	14	1.46	8.151
P	15	1.23	10.486
S	16	1.09	10.36
Cl	17	0.97	12.967
Ar	18	0.88	15.759
K	19	2.77	4.341
Ca	20	2.23	6.113
Ga	31	1.81	5.999
Ge	32	1.52	7.899
As	33	1.33	9.81
Se	34	1.22	9.752

Lesson 47: Graphical Comparison Lab (cont.) Chemistry with Lab

Element Symbol	Atomic Number	Atomic Radius (Angstroms)	Ionization Energy (Volts)
Br	35	1.12	11.914
Kr	36	1.03	13.999
Rb	37	2.98	4.177
Sr	38	2.45	5.695
In	49	2.00	5.786
Sn	50	1.72	7.344
Sb	51	1.53	8.641
Te	52	1.42	9.009
I	53	1.32	10.451
Xe	54	1.24	12.13

1. Looking carefully at the data, what elements have been left out? Why do you think they have been omitted?
2. Describe the general trends in atomic radius for a period and for a group.
3. Describe the general trends in ionization energy for a period and for a group.
4. Place the one graph on top of the other and describe the differences in trends for the two properties.
5. Why is there a dip in ionization energies between the elements Be and B, between Mg and Al, and between Ca and Ga? (Think electron distributions!)

Lesson 50: Table of Electronegativities

Chemistry with Lab

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Li	Li	Be	Be	Al	Al	Si	Si	Al	Al	Al	B	C	N	O	F	Ne	He	
1.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.0	2.5	3.0	3.5	4.0	—	—	
3	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Na	Na	Mg	Mg	Sc	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ge	As	Se	Br
0.9	1.2	1.2	1.2	1.3	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.8	2.0	2.4	2.8
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	K	Ca	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ge	As	Se	Br	Kr
0.8	1.0	1.0	1.0	1.3	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.8	2.0	2.4	3.0
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	2.6	—
6	55	56	*71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn	—
0.7	0.9	1.3	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	2.4	—
7	87	88	*103	Fr	Ra	Lr	—	—	—	—	—	—	—	—	—	—	—	—
6	*57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74
La	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Lu	Lu	Lu
1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.1	1.2	1.1	1.2	1.2	1.2	1.3	1.1	1.1	1.1	1.1	1.1
7	**89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	—	—	—	—	—

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry_SHARED_17/Chemistry_Periodic_Table_SHARED/Module_5_Table_of_Electronegativities.pdf)

Lesson 50: Bonding Key Terms

Chemistry with Lab

1. **Chemical bond** – Any of several forces, especially the ionic bond, covalent bond, and metallic bond, by which atoms or ions are bound in a molecule or crystal.
2. **Ionic bond** – A chemical bond between two ions with opposite charges, characteristic of salts.
3. **Covalent bond** – A chemical bond formed by the sharing of one or more electrons, especially pairs of electrons, between atoms.
4. **Metallic bond** – The chemical bond characteristic of metals, in which mobile valence electrons are shared among atoms in a usually stable crystalline structure.
5. **Hydrogen bond** – A chemical bond in which a hydrogen atom of one molecule is attracted to an electronegative atom, especially a nitrogen, oxygen, or fluorine atom, usually of another molecule.
6. **Delocalized** – electrons in a molecule or solid metal that are not associated with a single atom or *one* covalent bond.
7. **Crystal lattice** – A geometric arrangement of the points in space at which the atoms, molecules, or ions of a crystal occur.
8. **Luster** – A radiant brightness or glow, usually due to light reflected from a smooth surface.
9. **Malleable** – Capable of being shaped or formed, as by hammering or pressure.
10. **Ductile** – Easily drawn into wire or hammered thin.
11. **Volatile** – Evaporating readily at normal temperatures and pressures.
12. **Ion** – An atom or a group of atoms that has acquired a net electric charge by gaining or losing one or more electrons.
13. **Cation** – An ion or group of ions having a positive charge and characteristically moving toward the negative electrode in electrolysis.
14. **Anion** – A negatively charged ion, especially the ion that migrates to an anode in electrolysis.
15. **Intermolecular force** – The force between two molecules; it is that negative gradient of the potential energy between the interacting molecules, if energy is a function of the distance between the centers of the molecules.

Lesson 50: Bonding Key Terms (cont.)

Chemistry with Lab

16. **London-dispersion force** – a weak intermolecular force arising from quantum induced instantaneous polarization multipoles in molecules.
17. **Polar** – Relating to or characterized by a dipole.
18. **Nonpolar** – Not characterized by a dipole.
19. **Electron dot diagram** – A structural formula in which electrons are represented by dots; two dots between atoms represent a covalent bond. Also known as electron-dot formula; Lewis formula.
20. **Lewis structure** – Can be synonymous with electron dot diagram; further depicts how electrons are shared in bonds between atoms within a molecule.

Lesson 50: Introduction to Bonding Notes

Chemistry with Lab

Chemical bond – forms when 2 or more atoms rearrange _____ to increase _____.

Ionic bond – forms when valence _____ are _____ from one atom to another.

- cation – atom _____ electrons to become _____ charged
- anion – atom _____ electrons to become _____ charged
- In ionic compounds, the ions are arranged in a _____ and _____ forces hold the ions together.

Properties of ionic compounds:

- high _____ and _____ points
- _____ - not easily _____
- _____ electricity when _____ or _____ because the ions are free to _____.

Covalent bond - _____ are _____, forming _____.

- Covalent compounds have _____ forces holding the _____ together.

Properties of covalent compounds:

- Lower _____ and _____ points

Lesson 50: Introduction to Bonding (cont.)

Chemistry with Lab

- Many covalent compounds are _____ liquids or gases.
- _____ - easier to _____
- are not _____ of electricity

Electronegativity – property that tells how strong an atom's _____ is for _____.

- Since oxygen has a _____ electronegativity than hydrogen, oxygen holds onto shared electrons _____, giving the oxygen a _____ negative charge and the hydrogen a partial _____ charge.

polar covalent bonds – electrons are shared _____, creating partially charged ends or _____.

nonpolar covalent bonds – electrons are shared _____ because atoms have the same electronegativities

Electronegativity difference	Type of Bond
greater than or equal to 1.7	
between 1.7 and 0.3	
less than or equal to 0.3	

Lesson 50: Introduction to Bonding (cont.)

Chemistry with Lab

Examples:

Mg and F?

S and O?

Program 501, problem set 1:

metallic bond – electrons are _____

(creates a “_____ of _____”)

properties of metals:

- 1.
- 2.
- 3.
- 4.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 51: Ionic or Covalent Data Table

Chemistry with Lab

	Hardness test: Hard or soft?	Ionic or Covalent due to hardness?	Ionic or Covalent due to nature of formula?	Step 4 observations	Step 5 observations	Step 6 observations
Table Salt						
Baking Soda						
Butter, Margarine, or Shortening						
Solid Air Freshener						
Vegetable Oil						
Water						
Soda						
Rubbing Alcohol						
Vinegar						

Lesson 51: Ionic or Covalent Data Table (cont.)

Chemistry with Lab

	Step 7 observations	Step 8 observations?	Step 9 observations	Step 10 observations	Ionic or Covalent?
Table Salt					
Baking Soda					
Butter, Margarine, or Shortening					
Solid Air Freshener					
Vegetable Oil					
Water					
Soda					
Rubbing Alcohol					
Vinegar					

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry_SHARED_17/Chemistry_Periodic_Table_SHARED/Module_5_Ionic_or_Covalent_Data_Table.xls)

Lesson 52: Bonding Part II Notes

Chemistry with Lab

Oxygen:

symbol _____

atomic number _____

_____ protons

_____ electrons

Oxygen has _____ valence electrons

Electron Dot Diagram – atom's _____ surrounded by _____

to represent its _____ electrons

Example electron dot diagrams:

O

Li

Problem Set 1:

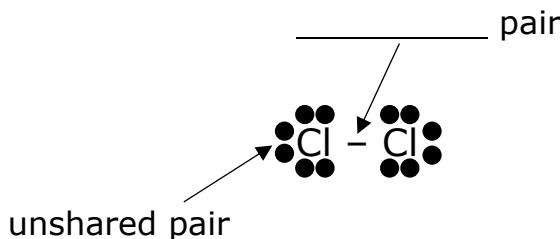
Lewis Structure: diagram representing the arrangement of _____ electrons in a _____.

Most atoms need _____ valence electrons to become stable. The exceptions are H and He which only need _____ valence electrons to be stable.

Lesson 52: Bonding Part II Notes (cont.)

Chemistry with Lab

Lewis structure for H_2



shared pair

- 2 electrons belonging to both _____
- represented by a _____ between symbols

Lewis structure for Cl_2 :

Each Cl atom has _____ valence electrons, giving a total of _____ valence electrons to work with.

- electrons belonging to only one _____
- represented by 2 dots

Lewis structure for HCl:

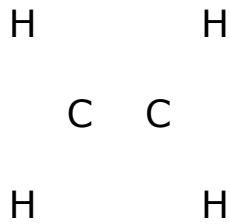
When more than two atoms bond, you must determine which is central.

The central atom is:

- frequently _____
- never _____
- often atom with _____ electronegativity

Lesson 52: Bonding Part II Notes (cont.)

Chemistry with Lab



Lewis structure for CH_3I :

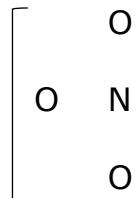
(There are a total of _____ valence electrons to work with.)

Problem Set 2:

Lewis structure of ethene, C_2H_4 (has total of _____ valence electrons)

type of bond	pairs of electrons shared

Lesson 52: Bonding Part II Notes (cont.)


Chemistry with Lab

Problem Set 3:

Polyatomic Ion: _____ bonded group of ions with a _____

Example: NO_3^{1-} (has gained _____ electron to give a total
of _____ valence electrons to work with)

Problem Set 4:

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry_SHARED_17/Chemistry_Periodic_Table_SHARED/Chemistry_Periodic_Table_SHARED16.html - sidebar)

Lesson 52: Video Problem Set

Chemistry with Lab

Electron Dot Diagrams

magnesium

Mg

helium

He

krypton

Kr

aluminum

Al

bromine

Br

potassium

K

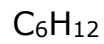
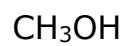
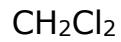
nitrogen

N

silicon

Si

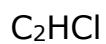
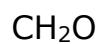
strontium




Sr

Lesson 52: Video Problem Set (cont.)

Chemistry with Lab

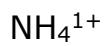
Draw Lewis structures for:

Lesson 52: Video Problem Set (cont.)

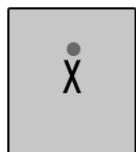
Chemistry with Lab

Draw Lewis structures for:

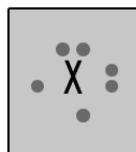


Lesson 52: Video Problem Set (cont.)

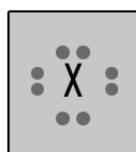
Chemistry with Lab

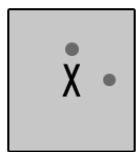


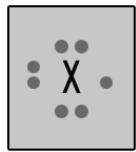
Draw Lewis structures for:

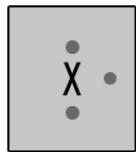


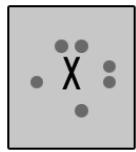
Lesson 53: Matching Activity

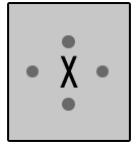

Chemistry with Lab


Boron


Neon


Oxygen


Lithium


Magnesium

Phosphorus

Sulfur

Iodine

Carbo

Lesson 57: Ionic Charges Chart

Chemistry with Lab

Cations

1+		2+		3+		4+	
ammonium cesium gold(I) hydrogen lead(I) lithium potassium silver sodium copper(I)	NH ₄ ⁺ Cs ⁺ Au ⁺ H ⁺ Pb ⁺ Li ⁺ K ⁺ Ag ⁺ Na ⁺ Cu ⁺	barium beryllium cadmium calcium cobalt(II) copper(II) iron(II) lead(II) magnesium manganese(II) mercury(I) mercury(II) nickel(II) strontium zinc tin(II)	Ba ²⁺ Be ²⁺ Cd ²⁺ Ca ²⁺ Co ²⁺ Cu ²⁺ Fe ²⁺ Pb ²⁺ Mg ²⁺ Mn ²⁺ Hg ₂ ²⁺ Hg ²⁺ Ni ²⁺ Sr ²⁺ Zn ²⁺ Sn ²⁺	aluminum chromium(III) cobalt(III) gold(III) iron(III) manganese(III)	Al ³⁺ Cr ³⁺ Co ³⁺ Au ³⁺ Fe ³⁺ Mn ³⁺	tin(IV) nickel (IV) lead(IV)	Sn ⁴⁺ Ni ⁴⁺ Pb ⁴⁺

Roman numeral notation indicates charge of ion when element commonly forms more than one ion.

Anions

1-		2-		3-		
acetate amide bicarbonate* bisulfate** bisulfide bisulfite bromate bromide chlorate chlorite chloride cyanide cyanate fluoride hydride hydroxide hypochlorite iodate iodide nitrate nitrite perchlorate permanganate thiocyanate	C ₂ H ₃ O ₂ ⁻ NH ₂ ⁻ HCO ₃ ⁻ HSO ₄ ⁻ HS ⁻ HSO ₃ ⁻ BrO ₃ ⁻ Br ⁻ ClO ₃ ⁻ ClO ₂ ⁻ Cl ⁻ CN ⁻ OCN ⁻ F ⁻ H ⁻ OH ⁻ ClO ⁻ IO ₃ ⁻ I ⁻ NO ₃ ⁻ NO ₂ ⁻ ClO ₄ ⁻ MnO ₄ ⁻ SCN ⁻	carbonate chromate dichromate oxide oxalate silicate sulfate sulfide sulfite tartrate tetraborate thiosulfate	CO ₃ ²⁻ CrO ₄ ²⁻ Cr ₂ O ₇ ²⁻ O ²⁻ C ₂ O ₄ ²⁻ SiO ₃ ²⁻ SO ₄ ²⁻ S ²⁻ SO ₃ ²⁻ C ₄ H ₄ O ₆ ²⁻ B ₄ O ₇ ²⁻ S ₂ O ₃ ²⁻	arsenate arsenite citrate ferricyanide nitride phosphate phosphite phosphide	AsO ₄ ³⁻ AsO ₃ ³⁻ C ₆ H ₅ O ₇ ³⁻ Fe(CN) ₆ ³⁻ N ³⁻ PO ₄ ³⁻ PO ₃ ³⁻ P ³⁻	There are no common anions with a 4- charge.

*hydrogen carbonate

**hydrogen sulfate

Lesson 57: Chemical Formulas Terms

Chemistry with Lab

1. **Ionic compound** – a chemical compound in which ions are held together in a lattice structure by ionic bonds.
2. **Molecular compound** – The smallest particle of a substance that retains the chemical and physical properties of the substance and is composed of two or more atoms bonded together by the sharing of electrons.
3. **Subscripts** – A distinguishing character or symbol written directly beneath or next to and slightly below a letter or number. In chemical formula writing, the subscript denotes how many atoms or ions of a particular element or polyatomic ion are present.
4. **Nomenclature** – A system of naming chemical compounds and for describing the science of chemistry in general. It is maintained by the International Union of Pure and Applied Chemistry (IUPAC).
5. **Polyatomic ions** – An electrically charged species formed by covalent bonding of atoms of two or more different elements, usually nonmetals, for example, the ammonium ion(NH_4^+).
6. **Reactant** – A substance participating in a chemical reaction, especially a directly reacting substance present at the initiation of the reaction.
7. **Product** – A substance resulting from a chemical reaction.
8. **Law of Conservation of Mass** – The notion that mass, or matter, can neither be created nor destroyed.
9. **Coefficient** – A number placed in front of a term in a chemical equation to indicate how many molecules or atoms take part in the reaction.
10. **Precipitate** – To be separated from a solution as a solid.
11. **Aqueous** – A solution dissolved in water.
12. **Synthesis reaction** – A direct combination reaction in which two or more reactants combine to form a single product. The general form is: $\text{A}_x + \text{B} \rightarrow \text{A}_x\text{B}$.
13. **Decomposition reaction** – A chemical reaction in which a compound is broken down into simpler compounds, or even into elements. This is the opposite of a synthesis or direct combination reaction. The general form is: $\text{A}_x\text{B} \rightarrow \text{A} + \text{B}$.
14. **Single replacement reaction** – A chemical reaction in which an element replaces one element in a compound. A single uncombined element replaces another in a compound. Two reactants yield two products. The general form is: $\text{A} + \text{BC} \rightarrow \text{B} + \text{AC}$.

Lesson 57: Chemical Formulas Terms (cont.)

Chemistry with Lab

15. **Double replacement reaction** – A molecular process involving the exchange of bonds between two reacting chemical species, which results in the creation of products with similar or identical bonding affiliations. Also known as a metathesis reaction. The general form is: $AX + BY \rightarrow BX + AY$.
16. **Combustion reaction** – The burning of any substance, in gaseous, liquid, or solid form. A chemical reaction that involves the rapid combination of a fuel with oxygen. The general form is: fuel + oxygen \rightarrow heat + water + carbon dioxide.
17. **Activity series** – a series of elements that have similar properties, for example, metals, arranged in descending order of chemical activity.
18. **Hydrocarbon** – Any of numerous organic compounds, such as benzene and methane, that contain only carbon and hydrogen.

Lesson 57: Ionic Formula Notes

Chemistry with Lab

Chemical Formula

Tells the _____ number of atoms of each element in a _____.

Molecular: (_____ bonding)

Formula represents the number of _____ of each _____ in a single _____.

Ionic: (_____ bonding)

Formula represents the _____ of positive and negative _____ in one _____.

Ionic Bond

The _____ that binds _____ charged _____ together.

Metals

- _____ electrons
- ions are _____ charged
- _____

Nonmetals

- _____ electrons
- ions are _____ charged
- _____

Lesson 57: Ionic Formula Notes (cont.)

Chemistry with Lab

Writing Ionic Formulas

1. Write the _____ for the _____.
 - The _____ is written first.
 - The _____ is written second.
2. Determine the _____ on each ion.
3. Select _____ that will make the _____ _____ charge equal to the _____ _____ charge.

examples: sodium chloride

magnesium chloride

Criss-Cross Method for Formula Writing

- Write symbol of _____ followed by symbol of _____ along with their _____.
- Use the _____ _____ of the charge of each ion as the _____ for the other.
- If the subscripts are the same, _____ them.
- Subscripts must be simplified in an ionic formula.

Examples:

Lesson 57: Ionic Formula Notes (cont.)

Chemistry with Lab

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

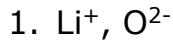
4. _____ 5. _____

Lesson 59: Ionic Formula Practice

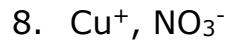
Chemistry with Lab

In each box, write the formula of the ionic compound consisting of the positive ion to the left of the box and the negative ion above the box.

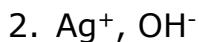
	Cl ⁻	S ²⁻	F ⁻	N ³⁻	O ²⁻	P ³⁻
MG ²⁺	MGCl ₂					
CS ⁺						
CR ³⁺						
NA ⁺						
ZN ²⁺						
AL ³⁺						

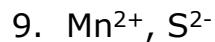

Ternary Compounds

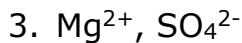
	OH ⁻	SO ₄ ²⁻	NO ₃ ⁻	CO ₃ ²⁻	PO ₄ ³⁻
MG ²⁺					
K ⁺					
AL ³⁺					
NH ₄ ⁺					
CA ²⁺					
FE ³⁺					

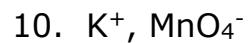

Lesson 60: Binary and Ternary Compounds

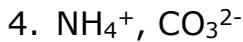
Chemistry with Lab

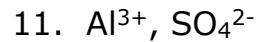

Write the formula of the compound formed from the following pairs of ions.

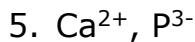


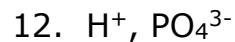


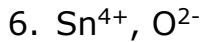


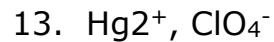


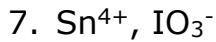


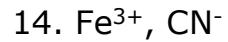


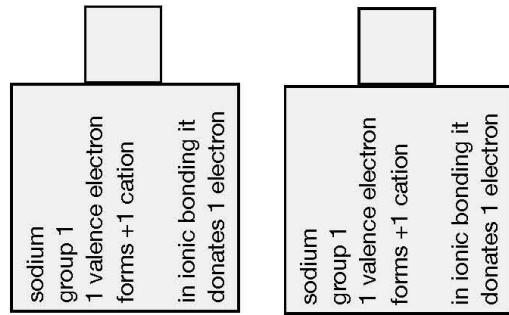
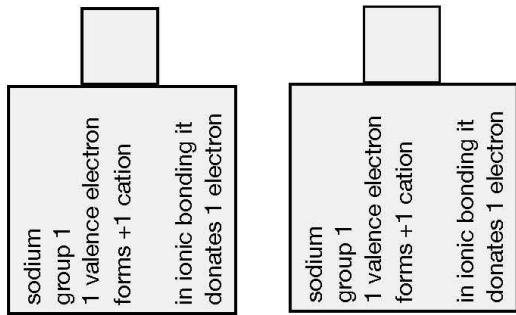
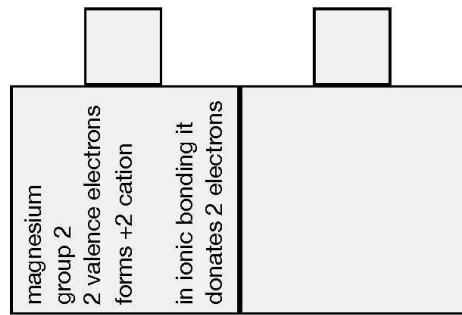
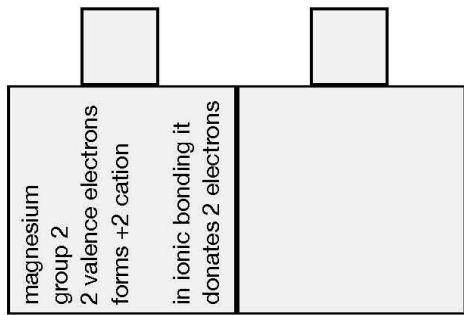
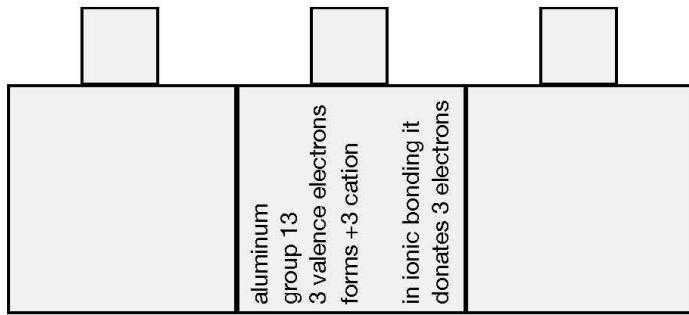


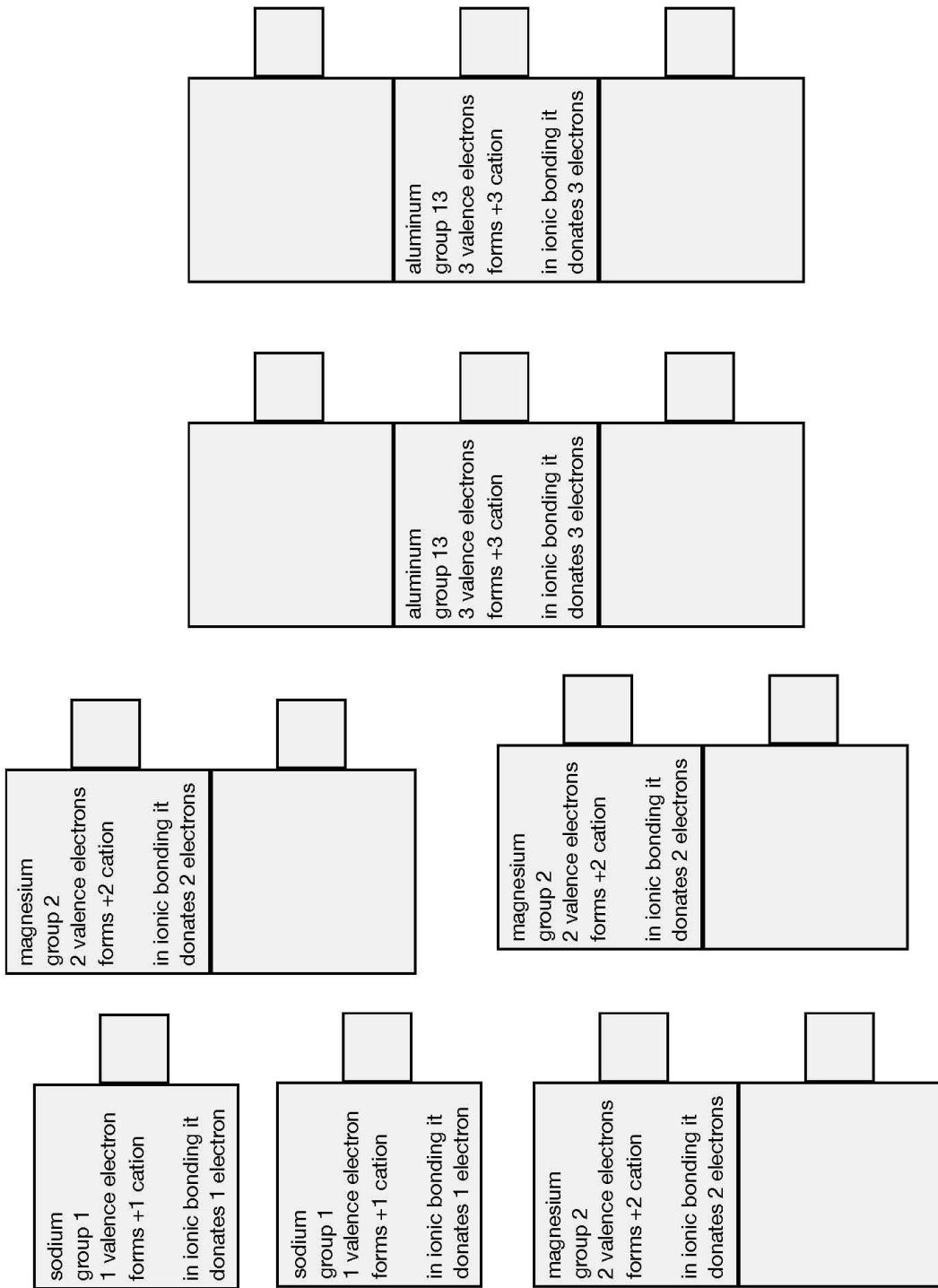









Lesson 61: Ionic Puzzle Pieces

Chemistry with Lab

Lesson 61: Ionic Puzzle Pieces (cont.)

Chemistry with Lab

Lesson 61: Ionic Puzzle Pieces (cont.)

Chemistry with Lab

Lesson 61: Ionic Puzzle Pieces (cont.)

Chemistry with Lab

nitrogen group 15 5 valence electrons in ionic bonding it receives 3 electrons			
oxygen group 16 6 valence electrons forms -2 anion in ionic bonding it receives 2 electrons			
oxygen group 16 6 valence electrons forms -2 anion in ionic bonding it receives 2 electrons			
oxygen group 16 6 valence electrons forms -2 anion in ionic bonding it receives 2 electrons			
chlorine group 17 7 valence electrons forms -1 anion in ionic bonding it receives 1 electron			
chlorine group 17 7 valence electrons forms -1 anion in ionic bonding it receives 1 electron			
chlorine group 17 7 valence electrons forms -1 anion in ionic bonding it receives 1 electron			

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry_SHARED_17/Chemistry_Formulas_Equations_SHARED/Module_6_Ion_Puzzle_Pieces.pdf)

Lesson 62: Molecular Formula Writing Notes

Chemistry with Lab

Molecular Compounds (_____ bonding)

Formula represents the number of _____ of each _____ in a single _____.

Prefix System of Nomenclature

Prefix	Number

Prefix	Number

examples: dinitrogen monoxide _____

tetraphosphorus decoxide _____

carbon dioxide _____; carbon monoxide _____

Organic compounds

any _____ bonded compound containing _____, with the exception of _____ and _____.

Lesson 62: Molecular Formula Writing (cont.)

Chemistry with Lab

Hydrocarbons Composed of only _____ and _____.

- Saturated contain only _____ bonds (_____)
- Unsaturated contain _____ (_____ and _____) carbon-carbon bonds

Very _____ because of _____ and _____

Organic Nomenclature

Prefix	# of carbon atoms (n)

Prefix	# of carbon atoms (n)

formulas: Alkane = C_nH_{2n+2}

Alkenes = C_nH_{2n}

examples: propane _____ nonane _____

butene _____

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 63: Molecular Compounds

Chemistry with Lab

1. In molecular compounds, _____ are used to show the number of atoms of each element per molecule.
2. Organic compounds are generally defined as compounds that contain the element _____.
3. A special type of organic compounds is _____ which are composed of only hydrogen and carbon atoms.
4. C_nH_{2n+2} is the general form for the specific group of organic compounds called _____.
5. Molecular compounds are formed between atoms of
 - a. nonmetals
 - b. metals
 - c. metals and nonmetals
6. Compounds containing only single bonds are said to be
 - a. saturated
 - b. unsaturated

Write the formula of the following compounds.

silicon dioxide _____

carbon tetrachloride _____

methane _____

octane _____

dinitrogen trisulfide _____

butene _____

tetraphosphorus triselenide _____

Lesson 63: Molecular Compound Assessment

Chemistry with Lab

Molecular compounds are formed between:

- a. metals
- b. nonmetals
- c. metals and nonmetals

In molecular compounds, the atoms bond together to form:

- a. molecules
- b. ions

In molecular compounds, what are used to show the number of atoms of each element per molecule?

Match the prefix with the meaning:

- a. di _____ one
- b. octa _____ two
- c. deca _____ three
- d. tri _____ four
- e. nona _____ five
- f. hexa _____ six
- g. mono _____ seven
- h. hepta _____ eight
- i. penta _____ nine
- j. tetra _____ ten

Lesson 63: Assessment (cont.)

Chemistry with Lab

Fill in the blanks using the word bank.

alkane	-ane	alkenes	bond	carbon	carbon atoms	double
-ene	hydrocarbons	prefix	saturated	triple	unsaturated	

Organic compounds are now defined as compounds that contain the element _____. The nature of the _____ between each pair of carbon atoms in an organic compound will determine whether the compound is saturated or unsaturated. The bonds between the carbon atoms in a(n) _____ compound are single bonds, but in a(n) _____ compound, the bonds between neighboring carbon atoms are double or _____ bonds. The organic compounds containing only hydrogen and carbon are called _____. C_nH_{2n+2} is the general form for the _____ series of hydrocarbons. The names of this series are composed of a _____, which denotes the number of carbon atoms present, and the suffix _____. This series of hydrocarbons has only single bonds, and so, is said to be _____. C_nH_{2n+2} is the general form for the class of hydrocarbons referred to as the _____. Each member of this series has a pair of carbon atoms connected by a _____ bond, and so, is said to be unsaturated. Again, prefixes are used to denote the number of _____ present in the molecule, and all members of this series end in the suffix _____.

Lesson 65: Naming Compounds Notes

Chemistry with Lab

Binary Ionic Compounds

- Consist of only _____ elements.
- Name the _____ ion (the _____).
- Name the _____ ion (the _____), changing the ending to _____.
- When metals that can form _____ than one type of _____ are in a compound, use a _____ in parentheses after the name of the _____ to show the _____.

Examples: NaCl _____ MgO _____
 Cu₂S _____ SnCl₄ _____

Ternary Ionic Compounds

- Made up of _____ elements.
- Name the _____ then name the _____ without changing the ending to "ide."

Examples: Na₂SO₄ _____
 FeCrO₄ _____

Naming Molecular Compounds

- The elements are named in the _____ they appear in the _____.

Lesson 65: Naming Compounds Notes (cont.) Chemistry with Lab

- _____ are used to denote the _____ of atoms of each _____ in the molecule. An exception is that the _____ element named is given a _____ only if there is more than _____ atom of that element in the _____.
- The “o” or “a” at the _____ of a _____ is _____ when the word following the _____ begins with a _____.
- The _____ element’s ending is changed to _____.

Examples: ICl_3 _____

As_2O_5 _____

Naming Hydrocarbons

Alkane: $\text{C}_2\text{H}_{2n+2}$

Alkene: C_nH_{2n}

Examples: C_4H_{10} _____

C_2H_4 _____

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 65: Naming Compounds

Chemistry with Lab

Name the following compounds.

Lesson 68: Ionic/Covalent Compounds

Chemistry with Lab

Determine whether each compound is ionic or covalent. Name the compound.

1. CoBr_2 _____
2. P_2O_5 _____
3. FeSO_4 _____
4. Na_2CO_3 _____
5. P_4 _____
6. B_2H_4 _____
7. CO _____
8. GaCl_3 _____
9. SiO_2 _____
10. NH_3 _____

Determine whether each compound is ionic or covalent. Write the formula.

11. dinitrogen trioxide _____
12. lithium acetate _____
13. phosphorous trifluoride _____
14. silicon tetrafluoride _____
15. vanadium (V) oxide _____
16. silver phosphate _____
17. aluminum hydroxide _____
18. nitrogen _____
19. methane _____
20. zinc sulfide _____

Lesson 69: Word Equations/Balancing Notes

Chemistry with Lab

Chemical Equations

- a _____ way of reporting the _____ of a _____.

Reactants

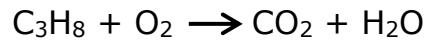
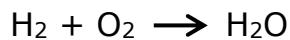
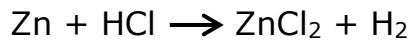
- the _____ substances in a _____
- placed on the _____ side of the _____

Products

- the substances _____ during a _____
- placed on the _____ side of the _____

- arrow is read as _____

Coefficients




- used to _____
- represent the _____ of _____, _____, or _____ of the _____

Law of Conservation of Mass

Mass _____ be _____ or _____.

Lesson 69: Word Equations/Balancing (cont.) Chemistry with Lab

Guidelines for Balancing Equations

- Start by _____ an _____
- Draw _____ around each _____ in the _____
- Begin with _____ molecule or formula unit of the _____ containing the _____ atoms.
- Balance _____ ions that appear on _____ sides of the _____ as a single unit.

Balance _____ and _____ atoms _____.

Hydrogen and oxygen combine to produce water.

Lesson 69: Word Equations/Balancing (cont.)

Chemistry with Lab

7 Diatomic Elemental Molecules

- Diatomic: _____, _____
- _____, _____, _____, _____,
_____ , _____, _____

Carbon disulfide reacts with oxygen to produce carbon dioxide and sulfur dioxide.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 73: Types of Reactions Notes

Chemistry with Lab

Descriptive Abbreviations

(_____) _____

(_____) _____

(_____) _____

(_____) _____

Determining State at Room Temperature

- All _____ are solids except for _____ which is a _____.
- Most _____ are _____ with these exceptions:
 - liquid - _____
 - solids - _____, _____, _____, _____, _____, _____, and _____
- All _____ are solids.
- _____ compounds are _____, unless stated otherwise.
- _____ compounds are _____, unless stated otherwise.

When heated, solid mercury (II) oxide yields mercury and oxygen gas.

Classifying Reactions

1. Synthesis:

- _____ or _____ substances combine to form a more _____ substance

Lesson 73: Types of Reactions Notes (cont.)

Chemistry with Lab

- _____ \rightarrow _____
- $\text{Fe (s)} +$ _____ \rightarrow _____
- $\text{H}_2\text{O (l)} +$ _____ \rightarrow _____

2. Decomposition:

- A _____ substance is _____
into _____ or more _____ substances.
- $\text{AB} \rightarrow$ _____
- $2\text{H}_2\text{O (l)} \rightarrow$ _____ + _____
- _____ \rightarrow _____ + _____

3. Single Replacement:

- A free _____ replaces a _____
element in a _____.
- $\text{A} + \text{BY} \rightarrow$ _____ + _____
- $\text{Zn (s)} +$ _____ \rightarrow _____ + _____
- $2\text{Al(s)} +$ _____ \rightarrow _____ + _____
- $\text{Cu (s)} + \text{MgCl}_2 \text{ (aq)} \rightarrow$ _____
 - Activity series: an _____ of elements in the order
of their _____ to _____

Activity Series of Metals

Decreasing Activity	Lithium Potassium Barium Calcium Sodium Magnesium Aluminum Manganese Zinc Chromium Iron Cadmium Nickel Tin Lead (Hydrogen) Copper Mercury Silver Gold
---------------------	--

4. Double Replacement:

- The _____ of reacting _____ each other.
- Normally takes place in an _____
- Also called _____ reactions
- $AX + BY \rightarrow$ _____ + _____

Lesson 73: Types of Reactions Notes (cont.)

Chemistry with Lab

- $2\text{KI (aq)} + \text{_____} \rightarrow \text{_____} + \text{_____}$
 - Precipitate
 - an _____
 - may be _____ in an equation by _____ or _____
- $\text{NaCl (aq)} + \text{_____} \rightarrow \text{_____} + \text{_____}$, or _____ of the _____

5. Combustion:

- Involves the _____ of a substance with _____
- Often called _____.
- The _____ of a _____ produces _____ and _____.
- $\text{C}_x\text{H}_y + \text{O}_2 \rightarrow \text{_____} + \text{_____}$
- $\text{C}_3\text{H}_8 (g) + 5\text{O}_2 (g) \rightarrow \text{_____} + \text{_____}$
- $\text{CH}_4 (g) + \text{_____} \rightarrow \text{_____} + \text{_____}$

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 77: Mass Relationships Key Terms

Chemistry with Lab

1. **Avogadro's number** – The number of molecules in a mole of a substance, approximately 6.0225×10^{23} .
2. **Mole** – The amount of a substance that contains as many atoms, molecules, ions, or other elementary units as the number of atoms in 0.012 kilograms of carbon 12. The number is 6.0225×10^{23} , or Avogadro's number.
3. **Molar mass** – symbol M, is a physical property characteristic of a given substance, namely its mass per amount of substance. The base SI unit for mass is the kilogram and that for the amount of substance is the mole, thus the derived unit for molar mass is kg/mol. However, for both practical and historical reasons, molar masses are almost always quoted in grams per mole (g/mol).
4. **Empirical formula** – A chemical formula that indicates the relative proportions of the elements in a molecule rather than the actual number of atoms of the elements.
5. **Molecular formula** – A chemical formula that shows the number and kinds of atoms in a molecule.
6. **Hydrate** – A solid compound containing water molecules combined in a definite ratio as an integral part of the crystal.
7. **Percentage composition** – The mass percent of each element in a compound.

Lesson 77: Introduction to the Mole Notes

Chemistry with Lab

Lab results: 1 dozen grains of rice = _____ g (Use this fact as a conversion factor.)

? grains of rice = 1.94 g

Avogadro's number – the _____ = the number _____

Molar Mass

the _____ of one _____ of any _____

molar mass of an element (g/mol)

equals the _____ of the element in grams

molar mass of a compound

equals the _____ of the _____ of the _____

making up the _____.

Example problems

Find the molar masses of:

magnesium _____ g/mol chlorine _____ g/mol

magnesium chloride _____ g/mol

Find the molar mass of aluminum oxide.

Lesson 77: Intro to the Mole Notes (cont.)

Chemistry with Lab

How many moles of atoms are there in 8.0 g of Mg?

How many atoms are in 0.7 g of He?

How many atoms are in 3.5 grams of silicon?

How many formula units are in 32.6 grams of potassium oxide?

How many molecules are in 0.25 grams of dinitrogen pentoxide?

more example problems:

What would be the mass of 5.3×10^{22} formula units of calcium iodide?

Lesson 77: Intro to the Mole Notes (cont.)

Chemistry with Lab

Episode 701 Problems: *Fill in masses from lab data and solve.*

How many atoms are in _____ grams of copper?

How many formula units are in _____ grams of salt?

How many molecules are in _____ grams of water?

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 79: Mole Problems

Chemistry with Lab

What is the mass in grams of 0.250 moles of Mg?

How many moles of atoms are there in 48.096 g of sulfur?

What is the mass of 24.6 formula units of magnesium oxide?

What is the mass of 4.56 moles of sulfur dioxide?

What is the mass of 4.56 molecules of sulfur dioxide?

How many formula units are in 0.456 g of $\text{Ca}_3(\text{PO}_4)_2$?

How many moles are in 1.5×10^{23} atoms of fluorine?

What is the mass of 2.80×10^{26} molecules of CO_2 ?

Lesson 79: More Mole Problems

Chemistry with Lab

How many atoms are contained in 3.46 moles of magnesium?

Convert 256.3 g sodium carbonate to formula units.

What is the mass of 12.4 molecules of carbon tetrachloride?

How many moles are contained in 0.43 g Al_2O_3 ?

The number of silicon atoms in 42.1 g of silicon is _____.

11.6 g of CuCl_2 = _____ moles CuCl_2 .

Convert 2.76 g Se to moles Se.

Lesson 79: More Mole Problems (cont.)

Chemistry with Lab

What is the mass in grams of 9.31×10^{21} atoms of carbon?

2.86 f.u. MgO = _____ moles MgO.

How many grams of sodium is equal to 6.92×10^{21} atoms of sodium?

The mass of 3.55 moles of NaCl is _____.

BONUS

What is the mass, in kilograms, of a 2.46×10^{20} formula units of barium chloride?

Lesson 80: Even More Mole Problems

Chemistry with Lab

How many grams are contained in 0.54 moles of calcium?

Convert 2.54 moles magnesium carbonate to formula units.

What is the mass of 3.1×10^{20} molecules of carbon monoxide?

How many formula units are contained in 0.67 g CaO?

The number of nitrogen molecules in 1.2 moles of N₂ is _____.

1.23×10^{28} f.u. of Al₂O₃ = _____ grams of Al₂O₃.

Convert 3.1 moles of water to grams of water.

Lesson 80: Even More Mole Problems (cont.)

Chemistry with Lab

What is the mass in grams of 4.6×10^{21} molecules of carbon tetrabromide?

3.2×10^{23} f.u. NaCl = _____ grams NaCl.

How many moles of silver is equal to 0.31 grams of silver?

The mass of 2.60 moles of SO₂ is _____.

BONUS

How many atoms of oxygen are contained in 12.3 kilograms of carbon dioxide?

Lesson 81: Mixed Reception

Chemistry with Lab

While you watch the introduction video, note below your preliminary thoughts about which person/people you personally suspect, and why and how they might have done it.

Lesson 81: Mixed Reception (cont.)

Chemistry with Lab

While you interview suspects and gather evidence, make notes below about each suspect – do you personally suspect them? What reasons might they have had to commit the crime, and most importantly, how might they have done it? What were their means?

	Do you suspect him? What is his motive? How might he have done it?
	Do you suspect him? What is his motive? How might he have done it?
	Do you suspect her? What is her motive? How might she have done it?
	Do you suspect him? What is his motive? How might he have done it?
	Do you suspect him? What is his motive? How might he have done it?

Lesson 81: Mixed Reception (cont.)

Chemistry with Lab

While you gather evidence, make notes below about how each piece of evidence might relate to a suspect, how it might have been used in the crime, etc.

Drug Info Sheet	
Joanna's Emails	
Anti-Toxin Report	
Punch	
Coroner's Report	
Nelson's Journal	
Peanuts	
Peanut Pie	
Nelson's Pills	
Pills from Joanna's Office	

Lesson 81: Mixed Reception (cont.)

Chemistry with Lab

Use this page for additional notes, calculations, and conclusions you make as you analyze the evidence and form your conclusion.

Lesson 81: Case Report Form

Chemistry with Lab

An unknown substance was present in Nelson's blood. What was this substance and how did it get into his blood? What evidence do you have to support this?

The molecular weight of the unknown substance in Nelson's blood is 765.82. Why?

What is the MW of the allergy drug?

What is the MW of the anti-venom?

The coroner says that Nelson died from peanut allergy, yet he was taking a drug for this. Can you explain why he would still die from peanuts?

Did Nelson take his medication that day? Was the correct concentration of medication present in his blood?

Lesson 81: Case Report Form (cont.)

Chemistry with Lab

You found an abstract on Sam's desk. Is this evidence relevant to your solution? Why or why not?

How did Sam know that giving Nelson the antivenom would kill him?

There were pills found in Joanna's office. Is this evidence relevant to your solution? Why or why not?

Are Joanna's emails important evidence in support of your solution?

Was any of the food left at the crime scene important evidence for your case? Why or why not?

Who did it?

Why did they do it?

How did they do it?

Lesson 84: Percent Composition Notes

Chemistry with Lab

Example Problem: Find the % by mass of oxygen in water.

Percentage by mass of element in a compound =
(mass of element in 1 mol of compound \div molar mass of compound) \times 100%

(*after completing lab #1*)

Find the % of carbon in sodium bicarbonate (NaHCO3).

Find the % composition of aluminum oxide. (This means to find the % of each element in the compound.)

Empirical Formula: simplest _____ number _____ of
_____ in a _____.

Example problem: Find the empirical formula for a compound containing 56.6 g of K, 8.7 g of C, and 34.7 g of O.

Lesson 84: Percent Composition Notes (cont.)

Chemistry with Lab

Step #1: Convert each mass into moles of the element.

Step #2: Divide each by the smallest to find a simple whole number ratio.

Ex. Problems: Work on separate paper.

_____ % Na

_____ % S

_____ % O

(Hint: When % are given, assume you have 100g of the compound, and the % changes to grams.)

P_xO_y

_____ g sample

_____ g P

(Hint: After step 2, if the ratio is still not whole numbers, multiply both subscripts by a number, such as 2, to get rid of fractions, such as 0.5.)

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 84: Lab Sheet 1

Chemistry with Lab

I. Fill in the data table below as you watch the lab on the video.

mass of sodium bicarbonate	
mass before reaction	
mass after reaction	

II. Write a balanced equation for the reaction that took place. (Hint: the narrator on the video will help you with this.)

III. Conclusion Questions: answer each question completely. Show all work!

- Calculate the mass of carbon dioxide produced in the experiment. (Hint: think about what bubbled away.)
- Use molar masses to calculate the percent of carbon in carbon dioxide using the following formula.

$$\% \text{ C in CO}_2 = \frac{\text{mass of C}}{\text{mass of CO}_2} \times 100\%$$

Lesson 84: Lab Sheet 1 (cont.)

Chemistry with Lab

- Calculate the mass of carbon in the sample of carbon dioxide using the same formula and your answers to the previous two calculations.
- Use molar masses to calculate the percent of carbon in carbon dioxide using the following formula.

$$\% \text{ C in NaHCO}_3 = \frac{\text{mass of C}}{\text{mass of NaHCO}_3} \times 100\%$$

IV. Practice Problems. Show all work!

- Calculate the percentage sodium in sodium oxide.
- Calculate the percentage aluminum in aluminum phosphate.
- Calculate the percentage hydrogen in hydrogen peroxide.
- Calculate the percentage nitrogen in dinitrogen pentoxide.

Lesson 84: Lab Sheet 2

Chemistry with Lab

I. Fill in the data table below as you watch the lab on the video.

mass of empty test tube	
mass of test tube with copper oxide (before reaction)	
mass of test tube with copper (after reaction)	

II. Calculations: show all work.

- Use the data to calculate the mass of copper oxide.
- Use the data to calculate the mass of copper.
- Use the two previous calculations to calculate the mass of the oxygen that was driven off.
- Using molar masses, calculate the moles of copper and oxygen.

mass of copper oxide		g
mass of copper		g
mass of oxygen		g
moles of copper		mol
moles of oxygen		mol

Lesson 84: Lab Sheet 2 (cont.)

Chemistry with Lab

III. Conclusion questions: answer each question completely. Show all work!

1. Within bounds of experimental error, use the mole ratio to write the formula of the compound.
2. What is the name of this compound? (Hint: you need a Roman numeral in the name.)
3. A compound of calcium and bromine is analyzed in the lab. A 20.0 g sample contains 4.00 g calcium. What is the empirical formula of the compound?
4. Find the empirical formula of a compound found to contain 26.56% potassium, 35.41% chromium, and the remainder oxygen.

Lesson 86: Percent Sugar Lab

Chemistry with Lab

Purpose: To determine the percent of sugar in soda, produce, or other grocery product.

Procedure: Choose 3 drinks, 3 fruits or vegetables, and 4 other food products of your choice. Record the 10 items in the data table below. Collect the nutrition data on the items. Record the mass of 1 serving size of each item in the data table below. Record the mass of sugar in 1 serving size of each item in the data table below.

Data:

Lesson 86: Percent Sugar Lab (cont.)

Chemistry with Lab

Calculations:

1. Calculate the percent composition of sugar in each substance. Use this formula: % sugar = (mass of sugar / mass of 1 serving) x 100%. Record the value in the data table, showing your work.
2. Create a bar graph and compare the percent of sugar in each substance. Include your graph as part of your lab report.

Analysis:

1. What has the highest percentage of sugar?
2. Does any category consistently have the most sugar?
3. Do you notice any correlation between % sugar and natural foods vs. processed foods?
4. Do you think more data is necessary when making health-conscious choices, or is it enough to look at % sugar alone?

Lesson 88: Molecular Formulas Notes

Chemistry with Lab

Molecular Formula

- represents the _____ number of _____ of each _____ in the _____
- not necessary for _____
- necessary for _____

The molecular formula for water is _____, and empirical formula is also _____.

The molecular formula for hydrogen peroxide is _____, and empirical formula is _____.

Example Problem

The empirical formula for glucose is CH₂O.

a) If the molar mass is 180.0 g/mole, find the molecular formula.

b) If the molar mass is _____ g/mole, find the molecular formula.

Problem Set One (work on separate paper)

empirical formula	molar mass
CH	_____ g/mol
NO ₂	_____ g/mol
C ₃ H ₈	_____ g/mol

Lesson 88: Molecular Formulas Notes (cont.)

Chemistry with Lab

Ex. Problem: Find the molecular formula for a compound with:

_____ g N _____ g O molar mass _____ g/mol

Hydrates

- _____ with _____ molecules adhering to the _____ or _____
- $\text{Na}_2\text{CO}_3 \bullet \text{_____ H}_2\text{O}$
indicates _____ _____ molecules adhering to each _____ _____ of sodium carbonate
- mass of _____ = mass of _____ compound minus mass of _____ compound

Example Problems

Determine the formula of hydrated barium chloride from this data:

initial mass of hydrated compound = 1.373 g
mass after heating – 1.175 g

Lesson 88: Molecular Formulas Notes (cont.)

Chemistry with Lab

Determine the formula for the hydrate that is _____% CaSO_3 and
_____% H_2O .

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 88: Molecular Formulas Lab

Chemistry with Lab

Mass of empty pipet	
Mass of hydrate and pipet	
Mass after 1 st heating	
Mass after 2 nd heating	

Calculations:

1. Using the data, calculate the mass of the water driven off.
2. Using your answer to number 1, calculate the number of moles of water driven off.
3. Using the data, calculate the mass of the “anhydrous” salt.

Lesson 88: Molecular Formulas Lab (cont.)

Chemistry with Lab

4. Using your answer to number 3 and the fact that your “anhydrous” salt is copper (II) sulfate, calculate the number of moles of “anhydrous” salt.
5. Using your answers to numbers 2 and 4, determine the formula of the hydrate.

Conclusions:

1. A hydrate is a crystal with _____ molecules adhering to the ions or molecules.
2. Define “anhydrous.”
3. Write the formula for hydrated zinc sulfate with 7 molecules of water adhering to each formula unit of zinc sulfate.

Lesson 91: Molecular Formulas and Hydrates

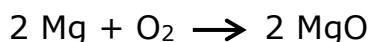
Chemistry with Lab

1. The empirical formula of a compound is found to be P_2O_5 . Experiments show that the molar mass of the compound is 283.9 g/mol. What is the molecular formula of the compound?
2. A compound has the following % composition—76.54 % C, 12.13 % H, and 11.33 % O. If its molar mass is 282.5 g/mol, what is its molecular formula?
3. What is the formula for a hydrate which consists of 90.7 % SrC_2O_4 and 9.30 % H_2O ?

Lesson 93: Stoichiometry Key Terms

Chemistry with Lab

1. **Stoichiometry** – Calculation of the quantities of reactants and products in a chemical reaction.
2. **Mole ratio** – Tells you the relative amounts of reactants and products in a chemical reaction.
3. **Actual yield** – Mass of product obtained from a chemical reaction.
4. **Theoretical yield** – Amount of product stoichiometrically predicted to be present when a limiting reactant is used up.
5. **Percent yield** – Actual yield of a chemical reaction, expressed as a percentage of the theoretical yield.
6. **Limiting reactant** – The reactant that is used up completely in a reaction, limiting further chemical change.
7. **Excess reactant** – The reactant that is left over in a chemical reaction.


Lesson 93: Mole-Mole and Mole-Mass Notes

Chemistry with Lab

Stoichiometry

- study of the _____ relationships in a _____

- based on _____ equations

The _____ in a _____ give the
_____ for the _____
involved in the _____.

Ex. Problem:

When elemental aluminum reacts with elemental iodine, aluminum iodide is produced.

mole ratios: _____ Al: _____ I₂

_____ Al: _____ AlI₃

_____ I₂: _____ AlI₃

If you start with 4 moles of Al, how many moles of AlI₃ will be produced?

Lesson 93: Mole-Mole and Mole-Mass (cont.) Chemistry with Lab

Problem Set One

How many moles of water will be produced when _____ grams of hydrogen gas react with the oxygen in the air?

(Hint: to “make the switch” between different substances in a reaction, us the _____ ratio from the _____ equation.)

Lesson 93: Mole-Mole and Mole-Mass (cont.)

Chemistry with Lab

Problem Set Two

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 93: Mole-Mole and Mole-Mass Lab

Chemistry with Lab

Can You Find the Mole Ratio?

In this experiment, baking soda (NaHCO_3) reacts with hydrochloric acid (HCl) to produce sodium chloride, carbon dioxide, and water. You will determine the moles of reactant used and moles of product produced using both the lab data and stoichiometry and compare the two.

Data table:

mass of test tube and baking soda	
mass of empty test tube	
mass of baking soda	
mass of test tube and sodium chloride	
mass of empty test tube	
mass of sodium chloride	

Conclusion Questions:

1. Calculate the number of moles of baking soda used in the lab.
2. Calculate the number of moles of sodium chloride produced in the lab.
3. What is the experimental mole ratio of baking soda (NaHCO_3) to sodium chloride (HCl)?
4. Write a balanced equation for the reaction that took place in the experiment.

Lesson 93: Mole-Mole/Mass Lab (cont.)

Chemistry with Lab

5. According to the balanced equation, what is the theoretical mole ratio of baking soda to sodium chloride?
6. Was the experimental mole ratio exactly the same as the theoretical mole ratio? If not, give some possible reasons.

Lesson 96: Stoichiometry Notes

Chemistry with Lab

Ex. Problems:

Sodium metal reacts with oxygen to produce solid sodium oxide. How many grams of sodium must react to produce _____ g of sodium oxide?

When _____ g of hydrogen reacts with oxygen, how many grams of water are produced?

Actual yield: amount of _____ produced when the _____ is performed in a _____

Theoretical yield: amount of _____ expected to be _____ based on the _____ and the amount of _____

Percent yield: $(\text{_____ yield} / \text{_____ yield}) \times 100\%$

Lesson 96: Stoichiometry Notes (cont.)

Chemistry with Lab

Percent Yield in Lab

actual yield of CO_2 = _____ (from lab data)

Calculate theoretical yield from balanced equation:

?g CO_2 = 0.23g NaHCO_3

% yield =

What is the % yield of carbon dioxide when _____ grams of propane are burned and _____ grams of carbon dioxide are collected?

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 102: Limiting Reactants Notes

Chemistry with Lab

Stoichiometry Problem Guidelines:

1. _____ the equation
2. convert to _____ of _____ substance
3. MAKE THE _____ USING _____
FROM BALANCED EQUATION
4. convert to _____

Problem Set One:

Limiting Reactant

_____ used up _____ in a _____ reaction.

Excess Reactant

_____ that is not used up on a chemical _____.

Lesson 102: Limiting Reactants Notes (cont.)

Chemistry with Lab

Ex. Problem:

When FeCl_3 reacts with O_2 , Fe_2O_3 and Cl_2 are produced. If 4.0 moles of FeCl_3 and 4.0 moles of O_2 are mixed, how many grams of Fe_2O_3 will be produced?

(Hint: Work two separate problems, using one reactant at a time.)

(Hint: Answer will be the [smaller, larger] amount of product.)

What is the limiting reactant?

What is the excess reactant?

Problem Set Two:

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

(From GAVL, creative commons 3.0 [<https://creativecommons.org/licenses/by/3.0/>], https://cms.gavirtualschool.org/Shared/Science/Chemistry/stoichiometry_shared/Module_8_Limiting_Reactants_Note_Taking_Guide.pdf)

Lesson 103: Limiting Reactants Activity

Chemistry with Lab

Complete the following using the candy provided. **Do not unwrap any candy.**

1. One butterscotch reacts with one peppermint to form a peppercotch according to the following BALANCED equation. $1 \text{ Bs} + 1 \text{ P} \rightarrow 1 \text{ PS}$
 - a. Use the candy in the bag to illustrate this reaction and answer the following questions. How many peppercotches can be formed and what is the limiting reactant? What reactant is in excess and how much of it is left over?

Number of peppercotches formed _____

Limiting Reactant _____

Excess Reactant _____

Amount of excess left over _____

- b. Use the balanced equation to answer the following question. One butterscotch has a mass of 5.0 grams and one peppermint has a mass of 4.0 grams. How many peppercotches can be made with 50.0 grams of butterscotch and 48.0 grams of peppermints?

2. One tootsie roll reacts with four gummy bears to form a tootsie bear according to the following BALANCED equation. $1 \text{ Tr} + 4 \text{ Gb} \rightarrow 1 \text{ TB}$

- a. How many tootsie bears can be formed and what is the limiting reactant? What is the excess reactant and how much is left over?

Number of tootsie bears formed _____

Limiting Reactant _____

Lesson 103: Limiting Reactants Activity (cont.) Chemistry with Lab

Excess Reactant _____

Amount of excess left over _____

b. Use the balanced equation to answer the following question. One tootsie roll has a mass of 2.0 grams and one gummy bear has a mass of 1.5 g. How many tootsie bears can be made with 12.5 grams of tootsie rolls and 15.0 grams of gummy bears?

3. Two starburst fruit react with six skittles to form a skitburst according to the following BALANCED equation. $2 \text{ Sb} + 6 \text{ Sk} \rightarrow 1 \text{ SB}$

a. How many skitbursts can be formed and what is the limiting reactant? What is the excess reactant and how much is left over?

Number of skitbursts formed _____

Limiting Reactant _____

Excess Reactant _____

Amount of excess left over _____

b. Use the balanced equation to answer the following question. One starburst has a mass of 5.0 grams and one skittle has a mass of 1.0 gram. How many skitbursts can be made from 40.0 grams of starburst and 26.0 grams of skittles?

Lesson 103: Limiting Reactants Activity (cont.) Chemistry with Lab

4. One caramel reacts with three candy corn to form a caramel corn according to the following BALANCED equation. $1 \text{ C} + 3 \text{ Cc} \rightarrow 1 \text{ CC}$

a. How many caramel corns can be formed and what is the limiting reactant? What is the excess reactant and how much is left over?

Number of caramel corns formed _____

Limiting Reactant _____

Excess Reactant _____

Amount of excess left over _____

b. Use the balanced equation to answer the following question. One candy corn has a mass of 1.5 grams and one caramel has a mass of 11.0 g. How many caramel corns can be made with 60.0 grams of candy corn and 66.0 grams of caramel?

Lesson 108: Gas Laws Formulas

Chemistry with Lab

$$P_1V_1 = P_2V_2$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$PV = nRT$$

$$P_T = P_1 + P_2 + P_3 \dots$$

$$\frac{v_1}{v_2} = \sqrt{\frac{d_2}{d_1}}$$

$$\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}}$$

$$R = 8.314 \frac{L \cdot kPa}{mol \cdot K}$$

$$R = 0.0821 \frac{L \cdot atm}{mol \cdot K}$$

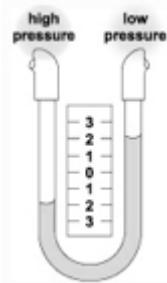
Water-Vapor Pressure

Temp (°C)	Pressure (mm Hg)	Pressure (kPa)
0.0	4.6	0.61
5.0	6.2	0.87
10.0	9.2	1.23
15.0	12.8	1.71
16.0	13.6	1.82
17.0	14.5	1.94
18.0	15.5	2.06
19.0	16.5	2.19
20.0	17.5	2.34
21.0	18.5	2.49
22.0	19.8	2.64
23.0	21.1	2.81

Temp (°C)	Pressure (mm Hg)	Pressure (kPa)
24.0	22.4	2.98
25.0	23.8	3.17
26.0	25.2	3.36
27.0	26.7	3.57
28.0	28.3	3.78
29.0	30.0	4.01
30.0	31.8	4.25
35.0	42.2	5.63
40.0	55.3	7.39
50.0	92.5	12.23
60.0	149.4	19.93
70.0	233.7	31.18

Kinetic Theory

1. **Kinetic theory** – physical theory that explains the behavior of gases on the basis of the following assumptions: (1) Any gas is composed of a very large number of very tiny particles called molecules; (2) The molecules are very far apart compared to their sizes, so that they can be considered as points; (3) The molecules exert no forces on one another except during rare collisions, and these collisions are perfectly elastic, i.e., they take place within a negligible span of time and in accordance with the laws of mechanics.
2. **Ideal gas** – A gas that, when kept at a constant temperature, would obey the gas laws exactly. No known gas is an ideal gas.


Pressure

3. **Pressure** – Force applied uniformly over a surface, measured as force per unit of area.
4. **Atmosphere** – A unit of pressure equal to the air pressure at sea level. It equals the amount of pressure that will support a column of mercury 760 millimeters high at 0 degrees Celsius under standard gravity.
5. **Kilopascal** – One thousand (10^3) pascals; the metric unit of pressure; one pound per square inch is equal to 6.89 kilopascals; abbreviated kPa.
6. **mm Hg** – A unit of pressure that is equal to approximately 1.316×10^{-3} atmospheres or 133.3 pascals.
7. **Atmospheric pressure** – Pressure caused by the weight of the atmosphere. At sea level it has a mean value of one atmosphere but reduces with increasing altitude.
8. **Standard temperature** – A temperature of 0°C or 273 Kelvin.
9. **Standard pressure** – A pressure of 1 atmosphere (101,325 newtons per square meter), to which measurements of quantities dependent on pressure, such as the volume of a gas, are often referred.
10. **STP** – standard temperature and pressure
11. **Barometer** – An absolute pressure gage specifically designed to measure atmospheric pressure. This instrument is a type of manometer with one leg at zero pressure absolute.

Lesson 108: Gas Laws Terms (cont.)

Chemistry with Lab

12. **Manometer** – A double-leg liquid-column gage used to measure the difference between two fluid pressures.

Gas Laws

13. **Boyle's Law** – The principle that at a constant temperature the volume of a confined ideal gas varies inversely with its pressure. $P_1V_1 = P_2V_2$

14. **Charles' Law** – The physical law that the volume of a fixed mass of gas held at a constant pressure varies directly with the absolute temperature.

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \quad \text{or} \quad \frac{V_2}{V_1} = \frac{T_2}{T_1} \quad \text{or} \quad V_1T_2 = V_2T_1$$

15. **Combined Gas Law** – A gas law which combines Charles' law, Boyle's law, and Gay-Lussac's law.

$$\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$$

16. **Avogadro's Law** – The principle that equal volumes of all gases under identical conditions of pressure and temperature contain the same number of molecules.

17. **Dalton's Law of Partial Pressure** - The law that the pressure of a gas mixture is equal to the sum of the partial pressures of the gases composing it.

$$P_{\text{total}} = P_1 + P_2 + P_3 + \dots$$

18. **Ideal Gas Law** - The equation of state of an ideal gas which is a good approximation to real gases at sufficiently high temperatures and low pressures; that is, $PV = nRT$, where P is the pressure, V is the volume, n is the number of moles, T is the temperature, and R is the gas constant.

Lesson 108: Kinetic Theory Notes

Chemistry with Lab

Kinetic Theory

- Gases are composed of _____, _____ particles called _____.
- Gas molecules are in _____.
- All _____ between particles are _____.
- The _____ of a gas display no _____ or _____ for one another.
- The _____ of the molecules is _____ to the _____ temperature of the gas.

Ideal Gas

- Gas whose _____ conforms to the _____ - it is _____.

Gas Pressure:

Pressure =

Atmospheric Pressure – the _____ the earth's _____ exerts due to its _____.

Barometer:

- Instrument used to measure _____.
- Invented by _____

Lesson 108: Kinetic Theory Notes (cont.)

Chemistry with Lab

Normal Atmospheric Pressure

- Also called _____
- _____
- _____
- _____
- _____

STP:

- _____ and _____
- _____
- _____

Manometer:

- _____ used to measure _____
- U-shaped tube _____ filled with _____
- One end _____ to _____
- One end _____ to _____

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 110: Boyle's Law Notes

Chemistry with Lab

Boyle's Law

- The _____ of a fixed _____ of gas varies _____ with the _____ at constant _____.
- _____ = _____
- _____ = _____

Kinetic Theory and Boyle's Law

- ❖ _____ of a gas is caused by the _____ of the gas _____ the walls of the _____.
- ❖ If the gas is _____ to _____ the volume it had, _____ as many _____ are present in any _____.
- ❖ _____ as many _____ per _____ on the walls of the _____.
- ❖ _____ of the gas will _____.

Ex 1: A balloon filled with Helium has a volume of 457 mL at standard atmospheric pressure. After the balloon is released, it reaches an altitude of 6.3 km where the pressure is only 65.5 kPa. What is the volume of the balloon at this altitude?

Lesson 110: Boyle's Law Notes (cont.)

Chemistry with Lab

Ex 2: Under pressure of _____ mm Hg, a confined gas has a volume of _____ mL. If the pressure is increased until the volume is _____ mL, what is the new pressure, assuming the temperature remains constant?

Charles's Law

- For a _____ of gas, as long as the _____ is held _____, the _____ varies _____ with the _____.
- _____ = _____
- _____ = _____

The Kelvin Temperature Scale

- _____ zero
 - ❖ _____ possible _____
 - ❖ _____ been reached
- _____ = absolute zero
- _____ = _____
- K = _____

Lesson 110: Boyle's Law Notes (cont.)

Chemistry with Lab

Ex 1: A quantity of gas occupies a volume of 506 cm^3 at a temperature of 147°C . Assuming the pressure stays constant, at what temperature will the volume of the gas be 604 cm^3 ?

Kinetic Molecular Theory and Charles's Law

- _____ the _____ _____ of a gas
_____ the average _____ _____ of its
_____.
- _____ moving molecules
 - ❖ strike the walls of the _____ more _____
 - ❖ strike the walls of the _____ with more _____
- From _____ law we derive that the _____ would have
to _____ if the _____ _____ is
_____ so that _____ would remain _____.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 110: Boyle's Law Lab

Chemistry with Lab

Lab: Boyle's Law—Datasheet

Data and Calculations:

- Pressure is defined as force per unit area: $P = \text{Force} / \text{Area}$
- When a book rests on top of the plunger, the pressure it exerts equals the weight of the book divided by the area of the bottom of the plunger.

1. Diameter of syringe = _____ cm = _____ m
Show your work here.

2. Weight (force) of 1 book = _____ N
Show your work here.

3. Calculate the area of the circle in m^2 using the formula πr^2 :

4. Using the fact that pressure is defined as force \div area, what is the pressure exerted by 1 book in N/m^2 ?

5. If $1 \text{ N/m}^2 = 1 \text{ Pascal (Pa)}$, what is the pressure exerted by 1 book in Pa?

Lesson 110: Boyle's Law Lab (cont.)

Chemistry with Lab

Using conversion facts, convert Pa to kPa. Show your work here.

Exerting Pressure	Pressure (kPa)	Volume of gas (cm ³)	P/V (kPa/cm ³)	P x V (kPa x cm ³)
atmosphere				
atmosphere + 1 book				
atmosphere + 2 books				
atmosphere + 3 books				
atmosphere + 4 books				
atmosphere + 5 books				

Use graphical analysis to make a graph of "pressure vs. volume". Use proper technique for scientific graphing and be sure to draw a best-fit line.

Conclusions:

As the pressure exerted on the air inside the syringe increased, the volume (increased, decreased).

Volume and pressure are (directly, inversely) proportional.

Look at the last two columns of your data table. Within bounds of experimental error, the relationship between pressure and volume of a gas is ($P/V = k$, $P \cdot V = k$). This relationship is known as: (Look at the title of this lab!)

Lesson 112: Behavior of Gases Notes

Chemistry with Lab

The Combined Gas Law

- Expresses the relationship between the _____, _____, and _____ of a _____ amount of _____.
- _____ or _____

Ex: A sample of gas has a volume of ____L when its temperature is ____K

and its pressure is ____mm Hg. What volume will the gas occupy at STP?

$$V_1 = \underline{\hspace{2cm}}$$

$$V_2 = \underline{\hspace{2cm}}$$

$$T_1 = \underline{\hspace{2cm}}$$

$$T_2 = \underline{\hspace{2cm}}$$

$$P_1 = \underline{\hspace{2cm}}$$

$$P_2 = \underline{\hspace{2cm}}$$

Diffusion

- The _____ spreading of a _____

Graham's Law of Diffusion

- Under the same conditions of _____ and _____, gases _____ at a rate _____ proportional to the _____ of their _____ (or molar _____).

Lesson 112: Behavior of Gases Notes (cont.) Chemistry with Lab

- _____ or _____

Ideal Gas Equation

- _____
- New variables:
 - $n =$ _____ of gas in _____
 - $R =$ _____
 - ❖ _____ constant
 - ❖ value depends on _____ used for _____ and _____
 - ❖ value of R when using _____ and _____:

$R =$ _____

Ex: The average lung capacity for a female student is 3.9L. At normal body temperature, 37°C and 110kPa, how many moles of air could her lungs hold?

$$P = \text{_____} \quad V = \text{_____} \quad T = \text{_____}$$

$$n = \text{_____} \quad R = \text{_____}$$

Lesson 112: Behavior of Gases Notes (cont.) Chemistry with Lab

Avogadro's Law

- Equal _____ of different _____ under the _____ conditions have the _____ number of _____.
- Conversely, if samples of _____ at the same _____ and _____ contain the _____ number of _____, then the _____ of all the _____ must be _____.
- At _____, one _____ of any gas occupies a _____ of _____ L
- _____ is the _____ of a gas.

Ex. 3.2 moles of KNO_3 are heated, producing O_2 and KNO_2 . Calculate the volume of O_2 in liters that could be obtained at STP.

Dalton's Law of Partial Pressures

- The _____ of a gas _____ is the _____ of the _____ of each gas _____.
- _____

Lesson 112: Behavior of Gases Notes (cont.)

Chemistry with Lab

Ex: Oxygen gas has been collected over water at a total pressure of 95.0 kPa and a temperature of 25°C. What is the pressure of the dry oxygen gas?

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 112: Graham's Law of Diffusion Lab

Chemistry with Lab

Introduction

The diffusion rates (velocities) of HCl and NH₃ gases will be compared. Hydrogen chloride fumes will come from hydrochloric acid and ammonia fumes will come from aqueous ammonia. Both will be simultaneously introduced into opposite ends of a glass tube. When the gases meet, they will form a white precipitate, NH₄Cl, which will form a ring in the tube.

According to the _____ theory, gas molecules are in constant motion, hitting each other and the sides of their container with perfectly

_____ collisions. The temperature of a gas is a measure of the average _____ energy of the molecules. The equation for calculating this energy is KE = $\frac{1}{2}mv^2$.

If two gases are the same temperature, the molecules have the same average kinetic energy. This makes KE a (constant, variable). This means that m and v² are _____ proportional. Heavier molecules move (slower, faster) than light molecules at the same temperature. Mathematically, the relationship can be stated as:

$$m_1 v_1^2 = m_2 v_2^2 \quad \text{which equals} \quad \frac{v_1^2}{v_2^2} = \frac{m_2}{m_1} \quad \text{which equals}$$

$$\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}}$$

The last equation is known as **Graham's Law of Diffusion**.

Lesson 112: Graham's Law Lab (cont.)

Chemistry with Lab

Procedure:

1. A drop of concentrated hydrochloric acid (a source of HCl fumes) was placed on a cotton swab. A drop of concentrated aqueous ammonia was placed on another cotton swab.
2. The swabs were simultaneously inserted into opposite ends of a glass tube.
3. The glass tube was left undisturbed for two minutes.
4. After two minutes, a white ring was located and the center of the ring was marked.
5. The distance from each end of the tube to the mark was measured.

HCl: $d_1 =$ _____

NH₃: $d_2 =$ _____

6. Calculate the ratio $d_1/d_2 =$ _____

This is also the ratio of the velocities of the molecules, v_1/v_2 .

$$\frac{v_1}{v_2} = \underline{\hspace{2cm}}$$

7. Calculate the molar masses of the molecules:

HCl: $m_1 =$ _____

NH₃: $m_2 =$ _____

8. Calculate the ratio:

$$\sqrt{\frac{m_2}{m_1}} = \underline{\hspace{2cm}}$$

9. Within bounds of experimental error, does $\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}}$? _____

Lesson 119: Midterm Exam

Chemistry with Lab

1. Which of these is a qualitative observation?
 - a. The candle is 3.0 cm in length.
 - b. The wick of the candle is curled at the top.
 - c. The wax contains carbon and hydrogen.

2. Numbers expressed in scientific notation must be expressed in this form where: $M \times 10^n$
 - a. M is one and n is greater than or equal to one but less than ten.
 - b. M is greater than or equal to one but less than ten, and n is one.
 - c. n is greater than or equal to one but less than ten.
 - d. M is greater than or equal to one but less than ten.

3. The process used to find the volume of an object by dropping it in water is called:
 - a. water displacement
 - b. water subtracting
 - c. irregular volume

4. Which of the following could be used as a conversion factor?
 - a. $1000 \text{ m} = 1 \text{ mm}$
 - b. $1000 \text{ mm} = 1 \text{ m}$
 - c. $100 \text{ m} = 1 \text{ cm}$
 - d. $1000 \text{ cm} = 1 \text{ m}$

5. What do you do when you don't know a conversion factor between the two units in the problem?
 - a. Make something up.
 - b. Give up and take a nap.
 - c. Use multiple conversion factors.
 - d. Change the problem.

Lesson 119: Midterm Exam (cont.)

Chemistry with Lab

6. The instrument used to measure mass is the:

a. graduated cylinder b. ruler
c. balance d. stopwatch

7. Which of the following is NOT a physical property of the chair?

a. The chair is blue b. The chair is made of wood.
d. The chair will burn. d. The chair has four legs.

8. Which of the following is NOT a symbol for an element?

a. Na b. CO c. S d. He

9. Which of the following is an example of a heterogeneous mixture?

a. tea b. oxygen c. pizza d. water

10. A(n) _____ is made of two or more elements chemically combined.

a. element b. mixture c. compound d. alloy

11. What is the formula for solving a density problem?

a. $D=mxv$ b. $D=m/v$ c. $D=v/m$

12. Dalton's atomic theory stated atoms unite in small, whole number ratios to form compounds.

True False

13. What particles are responsible for nearly all the mass of the atom?

a. The protons and electrons b. The protons and neutrons
c. The neutrons and electrons d. The electrons

Lesson 119: Midterm Exam (cont.)

Chemistry with Lab

14. The principal quantum number:

- a. is represented by n.
- b. refers to the main energy level of an electron.
- c. is a whole number.
- d. All of these

15. What is the electron distribution of carbon, which has an atomic number of six?

- a. $1s^12s^13s^13p^3$
- b. $1s^22s^23s^2$
- c. $1s^22s^22p^2$

16. The word "atom" comes from the Greek word "atomos" which means:

- a. divisible
- b. indivisible
- c. invisible

17. Mendeleev arranged the elements by increasing atomic:

- a. number
- b. mass
- c. theory

18. What phase of matter is oxygen at room temperature?

- a. solid
- b. liquid
- c. gas

19. How many energy levels does an atom of oxygen have?

- a. 1
- b. 2
- c. 3
- d. 4

20. Which of the following elements has the largest atomic mass?

- a. K
- b. Ca
- c. Sc

Lesson 120: Chemistry Solutions Terms

Chemistry with Lab

Solutions

1. **Homogeneous** – Uniform in structure or composition throughout.
2. **Heterogeneous** – Consisting of dissimilar elements or parts; not homogeneous.
3. **Solution** – A homogeneous mixture of two or more substances, which may be solids, liquids, gases, or a combination of these.
4. **Mixture** – A composition of two or more substances that are not chemically combined with each other and are capable of being separated.
5. **Solute** – A substance dissolved in another substance, usually the component of a solution present in the lesser amount.
6. **Solvent** – A substance in which another substance is dissolved, forming a solution.
7. **Miscible** – Can be mixed in all proportions.
8. **Immiscible** – Cannot undergo mixing or blending.
9. **Alloy** – A homogeneous mixture or solid solution of two or more metals, the atoms of one replacing or occupying interstitial positions between the atoms of the other.
10. **Filtration** – The act or process of separating or (completely or partially) removing selected components of a mixture by means of a filter.
11. **Suspension** – A system in which microscopically visible particles are dispersed throughout a less dense liquid or gas from which they are easily filtered but not easily settled because of system viscosity or molecular interactions.
12. **Tyndall effect** – Visible scattering of light along the path of a beam of light as it passes through a system containing discontinuities, such as the surfaces of colloidal particles in a colloidal solution.
13. **Colloid** – A system in which finely divided particles, which are approximately 10 to 10,000 angstroms in size, are dispersed within a continuous medium in a manner that prevents them from being filtered easily or settled rapidly.
14. **Rate of Solution** – How quickly a solute dissolves in a solvent. Factors determining the rate of solution are: surface area, stirring, amount of solute already dissolved, and temperature.

Lesson 120: Chemistry Solutions Terms (cont.)

Chemistry with Lab

Solubility

15. **Electrolytes** – A chemical compound that ionizes when dissolved or molten to produce an electrically conductive medium.
16. **Nonelectrolytes** – A substance whose molecules in solution do not dissociate to ions and thus do not conduct an electric current.
17. **Concentrated** – Having a high concentration of the solute.
18. **Dilute** – Describing a solution that has a relatively low concentration of solute. **solubility** - The amount of a substance that can be dissolved in a given amount of solvent.
19. **Aqueous** – Dissolved in water.
20. **Tincture** – A solution with alcohol as the solvent.
21. **Emulsion** – A suspension of small globules of one liquid in a second liquid with which the first will not mix: an emulsion of oil in vinegar.
22. **Saturated** – Combined with or containing all the solute that can normally be dissolved at a given temperature.
23. **Supersaturated** – To cause (a chemical solution) to be more highly concentrated than is normally possible under given conditions of temperature and pressure.

Molarity and Colligative Properties

24. **Molarity** – The molar concentration of a solution, usually expressed as the number of moles of solute per liter of solution.
25. **Molality** – The molal concentration of a solute, usually expressed as the number of moles of solute per kilograms of solvent.
26. **Colligative Property** – Properties dependent on the number of molecules but not their nature.

Lesson 120: A Special Type of Mixture Notes

Chemistry with Lab

Solutions

- Formed when substances _____ in other _____
- _____ mixtures
- _____ phase
- remain _____; particles do not _____ out
- cannot be separated by _____
 - solvent:
 - present in _____ amount
 - _____ the _____ to make the solution
 - solute:
 - present in _____ amount
 - _____ in the _____

Examples of Types of Solutions

Liquid - _____ solvent in which a _____, _____, or _____ is _____

- _____ dissolved in _____: _____
- _____ in _____: _____ in water
 - _____: the two liquids mix
 - _____: the two liquids _____ mix
- _____ dissolved in _____: _____ water

Lesson 120: Special Type of Mixture (cont.)

Chemistry with Lab

Solid

- _____: solid mixtures of _____: (_____ is a mixture of _____ and _____)

Gas

- gases dissolved in _____ other: (_____ is most common example)

Aqueous: _____ is the _____

Tincture: _____ is the _____

Suspension

- a _____ mixture
- particles in the _____ are thousands of times _____ than _____ and _____
- particles will _____ out upon _____
- can be separated by _____
- exhibit the _____ - the _____ of _____ in all directions

Colloid

- particles are _____ in size between those of _____ and true _____
- particles do not _____ out upon _____

Lesson 120: Special Type of Mixture (cont.)

Chemistry with Lab

- can not be separated by _____
- exhibit the _____

Emulsion

- _____ dispersion of _____ in _____
- _____ agent is necessary for maintaining _____
(_____ is an example)

Electrolyte: dissolves in water to form a _____ that _____

Nonelectrolyte: dissolves in water to form a _____ that does _____
conduct _____

Factors Affecting the Rate of Solution

1) _____ :

increasing the surface area of the _____ by _____
speeds up _____ by increasing the number of _____
between the _____ and the _____ surface.

2) _____ :

_____ or _____ helps to disperse solute particles,
_____ the number of _____ between the _____
and the _____ surface.

Lesson 120: Special Type of Mixture (cont.)

Chemistry with Lab

3) _____:

increases the average _____ of the solvent

molecules so that _____ between the solvent molecules and
the _____ are more _____.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 122: Solubility Notes

Chemistry with Lab

Saturated: solution containing all the _____ possible at given conditions of _____ and _____.

Unsaturated: solution containing _____ dissolved _____ than the _____ amount that can be _____ at given conditions of _____ and _____.

Supersaturated: unusual solution containing _____ dissolved _____ than is normally _____ at given conditions of _____ and _____.

Solubility: a _____ of how much _____ can _____ in a given amount of _____ at a specific _____.

Dilute Solution: The amount of _____ dissolved is _____ in relation to the amount of _____ present.

Concentrated Solution: The amount of _____ dissolved is _____ in relation to the amount of _____ present.

Factors Affecting Solubility

- 1) _____ of _____ and _____: " _____ dissolves _____."

Lesson 122: Solubility Notes (cont.)

Chemistry with Lab

2) _____

- Generally, increasing the _____ of the solution _____ the solubility of a _____ solute

3) _____

- Only affects the _____ of a _____
- _____ pressure _____ solubility
- _____ pressure _____ solubility
- Henry's Law: The _____ of a _____ dissolved in a given _____ of _____ is _____ proportional to the _____ of the _____.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 122: Solubility Lab

Chemistry with Lab

Procedure:

- 1) Each lab group was assigned a different temperature, calculating the solubility of KCl in water at that temperature. Each group conducted the lab as seen on the video, and their data follows. You are to complete columns #5 and #6, using the provided data from each lab group.

Data:

#1 Assigned Temperature °C	#2 Mass of evaporating dish + cover	#3 Mass of evaporating dish + cover + KCl solution	#4 Mass of evaporating dish + cover + dry KCl	#5 Mass of KCl (#4 - #2)	#6 Mass of water (#3 - #4)	#7 Mass of KCl per 100 g of water
10	37.81 g	48.75 g	40.54 g			
20	37.65 g	50.42 g	40.99 g			
30	36.95 g	47.82 g	39.81 g			
40	37.80 g	48.19 g	40.63 g			
50	36.50 g	47.49 g	39.75 g			
60	37.75 g	50.08 g	41.52 g			
70	35.98 g	48.29 g	39.86 g			
80	37.81 g	48.64 g	41.37 g			
90	36.99 g	48.96 g	40.98 g			

- 2) Column #7 is to be calculated as to express the solubility of KCl in grams per 100 grams of water. Following the equation given, complete column #7 for each group's data.

$$? \text{ g KCl} = 100 \text{ g H}_2\text{O} \times \frac{\text{Mass of KCl}}{\text{Mass of water}} =$$

Lesson 122: Solubility Lab (cont.)

Chemistry with Lab

3) Construct a graph using the vertical axis for grams of solute per 100 g of solvent and the horizontal axis for temperature. Staple your graph to this paper. BE SURE TO USE PROPER SCIENTIFIC GRAPHING TECHNIQUES.

Conclusion Questions:

1. The solubility of a solute is the maximum mass of the solute that will dissolve in a certain amount of water at a certain _____. This is the same as saying that solubility is the concentration of a/n (unsaturated, saturated) solution of the solute.
2. From your graph, what mass of KCl can be dissolved in 100 g of water at these temperatures? (*Use dotted lines on your graph to show how you used your graph to determine your answers*):
a) 25 °C _____ b) 55 °C _____
3. For each of the following, tell whether the solution would be saturated, unsaturated, or *crystallizing. (Hint: Plot the point and see whether it lies above, below, or on the best-fit line. Remember that the line represents a _____ solution.)
a) 40.0 g of KCl in 100 g of water at 75 °C _____
b) 34.0 g of KCl in 100 g of water at 55 °C _____
c) 45.0 g of KCl in 100 g of water at 25 °C _____

* Normally, crystallization (rather than supersaturation) occurs when more solute is present than what can be dissolved in a given amount of solvent at a given temperature. Crystallization simply refers to the excess solute "crystallizing" and settling out of the solution. Supersaturation is rare.

Lesson 125: Molarity Notes

Chemistry with Lab

Molarity (M)

- expresses _____
- $M = \frac{\text{_____}}{\text{_____}}$
- _____, _____, _____, and _____ / _____ all represent the same ratio.

Ex #1. A saline solution contains _____g of NaCl per _____mL of solution. What is its molarity?

$$M = \frac{\text{_____}}{\text{_____}}$$

Ex #2 How many moles of solute are contained in _____L of _____M CaCl_2 ?

Lesson 125: Molarity Notes (cont.)

Chemistry with Lab

Colligative Properties

- Any of the _____ of a _____ that change when the _____ of the _____ changes
- Depend on the _____ of _____ dissolved in a given _____ of _____
- Examples of Colligative Properties:
 - Vapor _____ Depression
 - The _____ of the _____ _____ of a liquid that occurs when substances are _____ in the _____
 - Vapor Pressure: the _____ of a _____ in _____ with its _____
 - Freezing _____ Depression
 - the _____ of the _____ _____ of a liquid that occurs when substances are _____ in the _____ (ex. using _____ in car radiators and _____ on icy roads)
 - Boiling _____ Elevation
 - the _____ of the _____ _____ of a liquid that occurs when substances are _____ in the _____

Lesson 125: Molarity Notes (cont.)

Chemistry with Lab

- boiling occurs when _____ equals _____ (ex. _____ in a car acts as a coolant in the summer.)

- More Examples of Colligative Properties:

_____, _____, _____

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 130: Molarity Practice Problems

Chemistry with Lab

1. How many grams of potassium carbonate are needed to make 280 mL of a 2.5 M solution?
2. How many liters of water are needed to make a 4.00 M solution using 75.0 grams of lithium bromide?
3. What is the concentration if I have 450 mL of iron (II) chloride solution that contains 9.6 grams of iron (II) chloride solute?
4. How many grams of ammonium sulfate are needed to make a 0.25 L of solution at a concentration of 6.0 M?
5. If I have 2.5 L of a solution that contains 660 grams of calcium phosphate, what is this solution's concentration?
6. Extra Credit: How many grams of copper (II) fluoride are needed to make 6.7 liters of a 1.2 M solution?

Lesson 130: Molarity Practice Problems (cont.)

Chemistry with Lab

1. How many liters of 0.88 M LiF solution can be made with 25.5 grams of solute?
2. What is the concentration of a solution that has a volume of 660 mL and contains 33.4 grams of aluminum acetate?
3. How many liters of 0.75 M solution can be made using 75 grams of lead (II) oxide?
4. How many kilograms of manganese (IV) oxide are needed to make 5.6 liters of a 2.1 M solution?
5. What is the concentration of a solution with a volume of 9.00 mL that contains 0.025 grams of iron (III) hydroxide?
6. Extra Credit: What is the concentration of a solution containing 3.3 mL of solvent and 12 grams of ammonium sulfite?

Lesson 130: Solubility Curve Worksheet

Chemistry with Lab

Use this solubility graph curve to answer the questions.

1. What are the customary units of solubility on solubility curves?
2. Define solubility.

Lesson 130: Solubility Curve Worksheet (cont.)

Chemistry with Lab

3. According to the graph, the solubility of any substance changes as _____ changes.
4. List the substances whose solubility decreases as temperature increases.
5. Which substance is least affected by temperature changes?
6. How many grams of ammonium chloride (NH_4Cl) at 50°C ?
7. _____ and _____ have the same solubility at approximately 78°C .
8. Which compound is least soluble in water at 10°C ?
9. How many grams of KNO_3 can be dissolved at 50°C ?
10. Are the following solutions unsaturated, saturated, or supersaturated?
 - a. 45g of NaNO_3 in 100 g of water at 30°C _____
 - b. 60g of KClO_3 in 100 g of water at 90°C _____
11. How many grams of sodium chloride, NaCl are required to saturate 100 grams of water at 100°C ?
12. How many grams of NaNO_3 are required to saturate 100 grams of water at 75°C ?
13. How many grams of KCl will saturate water at 20°C ?
14. At what temperature would 25g of potassium chlorate (KClO_3) dissolve?

Lesson 130: Solubility Curve Worksheet (cont.)

Chemistry with Lab

15. At what temperature would 60g of NH_4Cl dissolve?

16. 89g NaNO_3 is prepared at 30°C .

a. Will all of the salt dissolve? _____

b. What mass of NaNO_3 will dissolve at this temperature? _____

17. If 50g of NH_4Cl is dissolved at 50°C , how many additional grams of NH_4Cl would be needed to make the solution saturated at 80°C ?

18. At 50°C , how many grams of KNO_3 will dissolve?

19. At 70°C , how many grams of cerium (III) sulfate ($\text{Ce}_2(\text{SO}_4)_3$) dissolve?

20. Determine if each of the following is unsaturated, saturated, or supersaturated.

a. 55g of NH_3 at 20°C _____

b. 10g of $\text{Ce}_2(\text{SO}_4)_3$ at 10°C _____

c. 110g of KNO_3 at 60°C _____

d. 65g of NH_4Cl at 80°C _____

e. 12g of NH_3 at 90°C _____

f. 78g of NaNO_3 at 10°C _____

g. 145g of NaNO_3 at 80°C _____

h. 35g of NaCl at 100°C _____

Introduction to Acids, Bases, and Salts

1. **Acid** – Any of a class of substances whose aqueous solutions are characterized by a sour taste, the ability to turn blue litmus red, and the ability to react with bases and certain metals to form salts.
2. **Base** – Any of a class of compounds whose aqueous solutions are characterized by a bitter taste, a slippery feel, the ability to turn litmus blue, and the ability to react with acids to form salts.
3. **Salt** – Chemical compound formed when the hydrogen of an acid is replaced by a metal or its equivalent.
4. **Arrhenius acid** – A substance which releases hydrogen ions (H^+) in solution.
5. **Arrhenius base** – A substance which releases hydroxide ions (OH^-) in solution.
6. **Operational definition of an acid** – Any substance that increases the concentration of the H^+ ion with dissolved in water.
7. **Operational definition of a base** – Any substance that increases the concentration of the OH^- ion when dissolved in water.
8. **Brønsted-Lowry acid** – Any substance that can "donate" hydrogen ions (H^+) or protons to bases which "accept" them.
9. **Brønsted-Lowry base** – A homogeneous mixture or solid solution of two or more metals, the atoms of one replacing or occupying interstitial positions between the atoms of the other.

Indicators and the pH Scale

10. **pH** – A measure of the acidity or alkalinity of a solution, numerically equal to 7 for neutral solutions, increasing with increasing alkalinity and decreasing with increasing acidity. The pH scale commonly in use ranges from 0 to 14.
11. **pOH** – A logarithmic scale measuring the acidity (or basicness) of a solution. It is based on the amount of OH^- (hydroxide ions) in the solution.
12. **Strong acid** – An acid with a high degree of dissociation in solution; for example, HCl or H_2SO_4 .
13. **Weak acid** – An acid that does not ionize greatly; for example, acetic acid or carbonic acid.

Lesson 132: Acids, Bases, and Salts Terms

Chemistry with Lab

14. **Strong base** – A base with a high degree of dissociation in solution; for example NaOH or KOH.
15. **Weak base** – A chemical base that does not ionize fully in an aqueous solution; for example, ammonia.
16. **Electrolyte** – A chemical compound that ionizes when dissolved or molten to produce an electrically conductive medium.
17. **Indicator** - Any of various substances, such as litmus or phenolphthalein, that indicate the presence, absence, or concentration of another substance or the degree of reaction between two or more substances by means of a characteristic change, especially in color.
18. **Litmus paper** - An unsized white paper impregnated with litmus and used as a pH or acid-base indicator.
19. **Phenolphthalein** – A white or pale yellow crystalline powder, $C_{20}H_{14}O_4$, used as an acid-base indicator, in making dyes, and formerly in medicine as a laxative. Because of its toxicity, it is no longer used in over-the-counter laxatives.

Neutralization Reactions

20. **Neutralization reaction** – A reaction between an acid and a base that yields a salt and water.
21. **Titration** – The process, operation, or method of determining the concentration of a substance in solution by adding to it a standard reagent of known concentration in carefully measured amounts until a reaction of definite and known proportion is completed, as shown by a color change or by electrical measurement, and then calculating the unknown concentration.
22. **End point** – The point in a titration at which no more titrant should be added. It is determined, for example, by a color change in an indicator or by the appearance of a precipitate.
23. **Equivalence point** – The point in a titration where the amounts of titrant and material being titrated are equivalent chemically.
24. **Hydronium** – A hydrated hydrogen ion, H_3O^+ .

Lesson 133: Acids, Bases, Salts Notes

Chemistry with Lab

Arrhenius definitions: When reacting with _____,

- _____ release _____ ions (ex _____)
- _____ release _____ ions (ex _____)
- _____ are _____ compounds that release neither _____ ions nor _____ ions

Practice: Write "A" for acid, "B" for base, and "S" for salt.

Solution	Acid (A), Base (B), or Salt (S)	Reacts with Mg (R or NR)	Conductivity (C or NC)
HNO ₃			
NaOH			
NaCl			
H ₂ SO ₄			
HCl			
NH ₄ OH			
KNO ₃			
KOH			
HC ₂ H ₃ O ₂			

Lesson 133: Acids, Bases, Salts Notes (cont.)

Chemistry with Lab

Operational Definitions:

ACIDS:

- _____ taste
- react with some _____ to produce _____ gas
- _____
- turn _____ - _____ indicators different _____
- react with _____ to produce a _____ and water

BASES:

- _____ taste
- _____
- _____
- turn _____ - _____ indicators different _____
- react with _____ to produce a _____ and water

Naming Bases and Salts

To name _____ and _____, follow the standard rules for naming
_____ compounds.

NaOH _____

CaCl₂ _____

Lesson 133: Acids, Bases, Salts Notes (cont.)

Chemistry with Lab

Naming Acids

BINARY ACID

- only _____ elements
- first element is _____
- named: hydro_____ic acid
- HCl _____

TERNARY ACID

- _____ elements
- first element is _____
- other elements part of a _____ ion
- naming does NOT require a _____
- _____ \rightarrow _____
- _____ \rightarrow _____
- H_2SO_4 - _____ acid
- H_2SO_3 - _____ acid

Examples:

- H_3PO_4 _____
- HF _____
- HClO_2 _____

Lesson 133: Acids, Bases, Salts Notes (cont.)

Chemistry with Lab

Name the following acids:

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 137: Indicators and the pH Scale Notes

Chemistry with Lab

Acid/Base indicator: _____ that changes _____ in the presence of an _____ or a _____.

Solution	Litmus paper (R→B, B→R, or NC)	Phenolphthalein (color or NC)	Bromothymol Blue (color or NC)	Cabbage Juice (color or NC)
HNO ₃				
NaOH				
KOH				
H ₂ SO ₄				

Conclusion Questions:

1. Litmus turns _____ in an acid and _____ in a base.
2. Phenolphthalein (phth) turns _____ in an acid and _____ in a base.
3. Bromothymol blue turns _____ in an acid and _____ in a base.
4. Cabbage juice turns _____ in an acid and _____ in a base.

Strong Acids: dissociate _____ in _____ (ex: _____)

Weak Acids: dissociate _____ in _____ (ex: _____)
or _____)

Strong Bases: dissociate _____ in _____ (ex: _____)

Weak Bases: dissociate _____ in _____ (ex: _____)
or _____)

Lesson 137: Indicators and the pH Scale (cont.) Chemistry with Lab

pH = _____

0 _____ 7 _____ 14

Determine the pH of a solution of HCl that has a molarity of 1×10^{-4} M.

Calculate the pH for a solution of HNO₃ with a molarity of _____.

Calculate the pH for a solution of H₂SO₄ with a molarity of _____.

$[\text{H}^+][\text{OH}^-] =$ _____

Calculate the pH of a solution of NaOH with a molarity of 3.0×10^{-2} M.

Find the pH for a solution of Ca(OH)₂ with a molarity of _____.

Lesson 137: Indicators and the pH Scale (cont.) Chemistry with Lab

Calculate both the hydrogen ion concentration and the hydroxide ion concentration for an aqueous solution that has a pH of _____.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 142: Neutralization Reactions Notes

Chemistry with Lab

- A _____ reaction is the reaction between an _____ and a _____ to produce a _____ plus _____.
- A _____ is any compound containing the _____ from a base and the _____ from an acid.

Write the neutralization reaction when H_2SO_4 reacts with KOH. Label the acid, the base, and the salt.

Write the neutralization reaction when _____ acid reacts with _____ hydroxide.

- A _____ is a laboratory method used to determine the _____ of an acid or base in _____ by performing a _____ reaction with a _____ solution.
- In a _____ solution, the _____ of _____ ions must equal the _____ of _____ ions.

Lesson 142: Neutralization Reactions (cont.)

Chemistry with Lab

$$\text{moles } \underline{\quad} = \frac{\text{moles}}{1 \text{ mole}_A} (M_A)(V_A)$$

$$\text{moles } \underline{\quad} = \frac{\text{moles}}{1 \text{ mole}_B} (M_B)(V_B)$$

$$\frac{\text{moles}}{1 \text{ mole}_A} (M_A)(V_A) = \frac{\text{moles}}{1 \text{ mole}_B} (M_B)(V_B)$$

Example Titration Problem:

Find the molarity of this sample of hydrochloric acid (HCl) by neutralizing it with 0.5M sodium hydroxide (NaOH).

Volume of HCl	Volume of NaOH

- The _____ of a titration is the point at which the indicator changes _____ indicating that _____ has been reached so the _____ of _____ ions and the _____ of _____ ions are _____.

$$\frac{\text{moles } H^+}{1 \text{ mole}_A} (M_A)(V_A) = \frac{\text{moles } OH^-}{1 \text{ mole}_B} (M_B)(V_B)$$

Lesson 142: Neutralization Reactions (cont.)

Chemistry with Lab

In a titration of _____ with _____, _____ mL of the base were required to neutralize 10.0 mL of a _____ M _____. What is the molarity of the KOH?

60.0 mL of _____ molar _____ were needed to neutralize 30.0 mL of _____. What is the molarity of the acid?

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

Lesson 146: Thermochemistry Terms

Chemistry with Lab

1. **Kinetic energy** – The energy possessed by a body because of its motion, equal to one half the mass of the body times the square of its speed.
2. **Potential energy** – The energy of a particle or system of particles derived from position, or condition, rather than motion. A raised weight, coiled spring, or charged battery has potential energy.
3. **Heat** – A form of energy associated with the motion of atoms or molecules and capable of being transmitted through solid and fluid media by conduction, through fluid media by convection, and through empty space by radiation.
4. **Temperature** – A measure of the average kinetic energy of the particles in a sample of matter, expressed in terms of units or degrees designated on a standard scale.
5. **System** – Any set of interrelated parts. An *open system* allows mass and energy to circulate into and out of it; a *closed system* gives and receives energy but not mass.
6. **Surroundings** – Everything outside the thermodynamic system.
7. **Specific heat capacity** – Quantity of heat required to increase temperature of a body by one degree Celsius.
8. **Phase diagram** – A graph showing the pressures at which phase transitions between different states of a pure compound occur, as a function of temperature.
9. **Heat of fusion** – The amount of heat required to convert a unit mass of a solid at its melting point into a liquid without an increase in temperature.
10. **Heat of vaporization** – The amount of heat required to convert a unit mass of a liquid at its boiling point into vapor without an increase in temperature.
11. **Endothermic** – Characterized by or causing the absorption of heat.
12. **Exothermic** – Denoting a chemical reaction that releases heat into its surroundings.
13. **Activated complex** – An energetically excited state which is intermediate between reactants and products in a chemical reaction. Also known as transition state.
14. **Activation energy** – The energy, in excess over the ground state, which must be added to an atomic or molecular system to allow a particular process to take place.

Lesson 146: Thermochemistry Terms (cont.)

Chemistry with Lab

15. **Heating curve** – A heating curve is a graph showing how a substance's phases (gas, liquid or solid) change while being heated.

16. **Absolute zero** – The theoretical temperature at which substances possess no thermal energy, equal to -273.15°C or -459.67°F or 0 K.

Lesson 147: Thermochemistry Notes

Chemistry with Lab

Temperature:

- a measure of the _____ energy of the particles in a sample of matter
- does not depend on the amount of _____ in the sample
- symbol is _____; unit is _____

heat:

- _____ amount of _____ energy that flows because of a difference in _____.
- depends on _____ of sample
- symbol is _____; unit is _____ (1 cal = 4.18 ____)

Kinetic energy is _____ in _____

Potential energy is _____

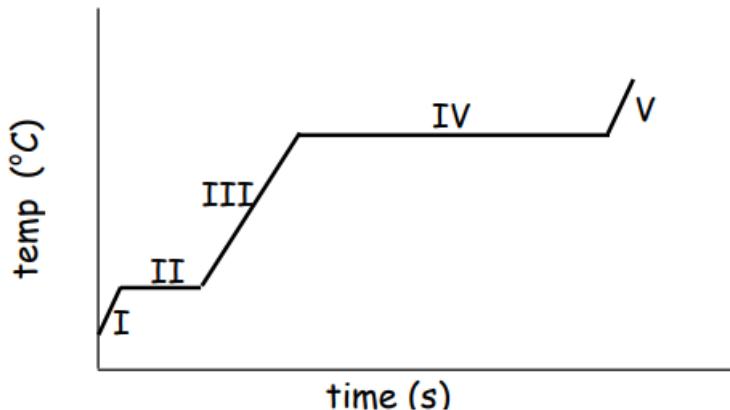
- Potential energy is hiding and cannot be _____.
- Only _____ in P.E. can be measured.

specific heat capacity:

- amount of _____ required to raise the _____ of 1 _____ of substance 1 _____
- symbol is _____; unit is _____

Lesson 147: Thermochemistry Notes (cont.)

Chemistry with Lab


$$Q = m \times C \times \Delta t$$

When heat (Q) is absorbed by a system, part of it (C) goes into storage as

_____ energy and part of it is used to make the molecules move around _____, raising the _____ (Δt).

**Why does sand get hotter in the day and colder at night than the water?

Heating Curve for Water

I:

Heat is being used to raise the _____ of the _____.

$$Q = \text{_____} \times \text{_____} \times \text{_____}$$

II:

Heat is being used to turn solid to _____. (phase change)

Lesson 147: Thermochemistry Notes (cont.)

Chemistry with Lab

III:

Heat is being used to raise the _____ of the _____.

$$Q = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \underline{\hspace{2cm}}$$

IV:

Heat is being used to turn liquid to _____. (phase change)

$$Q = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}}$$

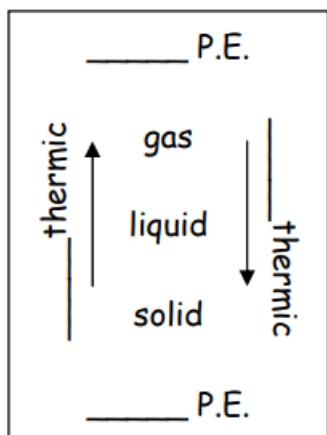
heat of vaporization - _____ required to change 1g of
_____ to _____

endothermic change: (_____ is an example.)

- _____ or _____ change in which a _____ absorbs _____ from its _____
- _____ \rightarrow _____ (Heat seems to _____.)
- _____ of system _____ and it becomes less _____.
(_____ is another example.)

exothermic change:

- physical or chemical _____ in which a system _____
_____ heat to its _____


Lesson 147: Thermochemistry Notes (cont.)

Chemistry with Lab

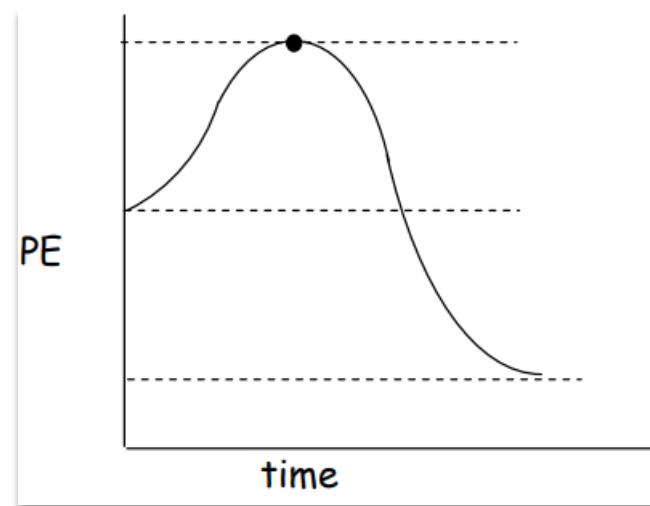
- _____ \rightarrow _____ (Heat seems to _____ out of _____)
- _____ of system _____ and it becomes _____ stable.

Ex. – Why does your skin feel cool when you get out of the pool?

Think about these steps to answer the question:

Identify the system - _____
goes from liquid (_____ P.E.) to _____ (_____ P.E.)
This is an _____ change. In this type of change, the system (the water) _____ heat from the surroundings.
Identify the surroundings - _____

Your skin feels _____ because it _____ heat. The heat was used to _____ the water.


Why do farmers spray fruit on trees with water when the temperature is going to drop below freezing? *Identify the system and surroundings and make the statements about them (as done above).*

Lesson 147: Thermochemistry Notes (cont.)

Chemistry with Lab

Energy Diagram of Chemical Change:

Label the chart:

As molecules get closer, their electron clouds _____ each other, and their P.E. (increases, decreases)

The _____ complex is highest point in P.E.

The energy required to reach the

complex is called the _____ energy.

Products are (higher, lower) in P.E. than reactants and are (more, less) stable.

This reaction is _____ thermic.

Problem Set #1: Draw the P.E. diagram shown and label the following: *reactants, products, activation energy, activated complex, ΔH_r (+ or -)*

Products are (higher, lower) in P.E. than reactants and (more, less) stable.

This reaction is _____ thermic.

When ΔE is high, the reaction is (slow, fast)

Lesson 147: Thermochemistry Notes (cont.)

Chemistry with Lab

Sketch a diagram for these reactions:

slow, exothermic

faster, endothermic

faster, exothermic

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

Lesson 153: Heat Transfer Lab

Chemistry with Lab

Table I.

	Ag	Water
Mass		
Initial Temperature		
Final Temperature		
Change in Temperature		
Heat Content		

Record your observations as you run the experiment.

Data Analysis and Interpretation

1. Which substance (Ag or water) loses heat when they are combined? Which substance gains heat when they are combined? Which process is endothermic and which is exothermic?
2. Calculate the heat transferred to or from Ag. Use the equation $q = mC_s\Delta t$ (q is heat in Joules, m is mass, C_s is the heat content, and Δt is the change in temperature).

Lesson 153: Heat Transfer Lab (cont.)

Chemistry with Lab

3. Calculate the heat transferred to or from water ($q = mC_s\Delta t$).
4. Compare the heats associated with the Ag and water. Make a generalization concerning these heats.
5. How would your results have been different if you had used different amounts of Ag and water starting at different temperatures? Try this out by doing new experiments and record your data and conclusions below.
6. Draw a picture of the microscopic view of a piece of solid silver metal in liquid water.

Lesson 153: Heat Transfer Lab (cont.)

Chemistry with Lab

7. Describe how heat was transferred between the two substances. What did you observe happening during the period just after the silver and water were added to each other? How about when the final temperature was reached? How does this help explain how heat is transferred?

	Al	Water	Cu	Water	Fe	Water
m						
t_i						
t_f						
Δt						
C_s						
q						
molar heat capacity						

Data Analysis and Interpretation

8. Calculate the heat lost or gained by each metal. Show your work for one of the calculations.

Lesson 153: Heat Transfer Lab (cont.)

Chemistry with Lab

9. Compare the results for all four metals. How are they different?
10. Which metal would make the best cookware? Why?
11. Calculate the molar heat capacity for Al, Cu, and Fe in units of $\frac{\text{J}}{\text{mol} \text{ } ^\circ\text{C}}$. Record the value on Table II.

	Unknown I	Water	Unknown II	Water
m				
t_i				
t_f				
Δt				

Lesson 153: Heat Transfer Lab (cont.)

Chemistry with Lab

12. Calculate values for the specific heats for the two unknown metals.
13. Based on the values in question 11, estimate the molar heat capacity for each unknown metal.
14. Calculate the molar mass of each unknown metal.
15. Assuming the unknown metals are pure substances, identify them.

Lesson 158: Nuclear Chemistry Key Terms

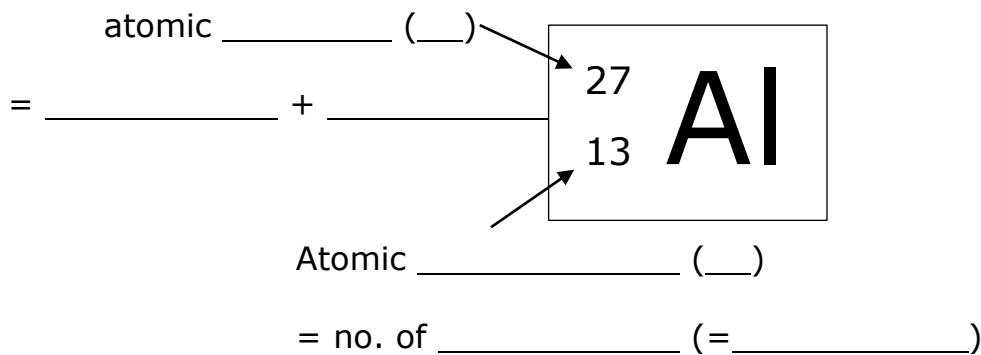
Chemistry with Lab

1. **Alpha particle** – A positively charged particle, indistinguishable from a helium atom nucleus and consisting of two protons and two neutrons.
2. **Beta particle** – A high-speed electron or positron, especially one emitted in radioactive decay.
3. **Gamma ray** – Electromagnetic radiation emitted by radioactive decay and having energies in a range from ten thousand (10^4) to ten million (10^7) electron volts.
4. **Fission** – A nuclear reaction in which an atomic nucleus, especially a heavy nucleus such as an isotope of uranium, splits into fragments, usually two fragments of comparable mass, releasing from 100 million to several hundred million electron volts of energy.
5. **Fusion** – A nuclear reaction in which nuclei combine to form more massive nuclei with the simultaneous release of energy.
6. **Isotope** – One of two or more atoms having the same atomic number but different mass numbers, due to a different number of neutrons in the nucleus.
7. **Nuclear reactor** – Any of several devices in which a chain reaction is initiated and controlled, with the resulting heat typically used for power generation and the neutrons and fission products used for military, experimental, and medical purposes.
8. **Radioactivity** – Spontaneous emission of radiation, either directly from unstable atomic nuclei or as a consequence of a nuclear reaction.
9. **Artificial transmutation** – An artificially induced nuclear reaction caused by the bombardment of a nucleus with subatomic particles or small nuclei.
10. **Bombardment** – the act (or an instance) of subjecting a body or substance to the impact of high-energy particles.
11. **Nucleon** – A proton or a neutron, especially as part of an atomic nucleus.
12. **Half-life** – The time required for half the nuclei in a sample of a specific isotopic species to undergo radioactive decay.

Lesson 158: Nuclear Chemistry Key Terms

Chemistry with Lab

13. **Particle accelerator** – A device, such as a cyclotron or linear accelerator, that accelerates charged subatomic particles or nuclei to high energies.


Lesson 159: Nuclear Science Notes

Chemistry with Lab

Nucleons:

- are particles occupying the _____
- consist of ____ charged _____ and _____
- have almost 2000 times the _____ of _____
- are made up of _____ and _____

Nuclear Notation:

$^{27}_{13}\text{Al}$ has _____ protons and _____ neutrons, for a total of _____ nucleons.

$^{28}_{13}\text{Al}$ has _____ protons and _____ neutrons, for a total of _____ nucleons.

isotopes: atoms of _____ element with different numbers of
_____ (different _____)

Forces acting on nucleons:

strong forces -

- forces of _____ between nucleons
- are independent of the _____ of the nucleon
- are short range (exist only between _____ neighbors)

Lesson 159: Nuclear Science Notes (cont.)

Chemistry with Lab

electrical force –

- force of _____ between _____ charged protons
- are long range

When are nuclei **unstable**?

- a. large nuclei ($Z > 82$) – electrical forces of _____ are greater than strong forces of _____
- b. wrong neutron: proton _____

A radioactive isotope:

- has an _____ nucleus
- spontaneously emits a _____ and _____ into another _____

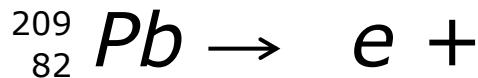
transmutation – changing into another _____ through radioactive _____

Types of Radioactive Emission:

	Symbol	Composition	Stopped by -
alpha			
beta			
gamma			

Lesson 159: Nuclear Science Notes (cont.)

Chemistry with Lab



Nuclear Equations:

alpha decay:

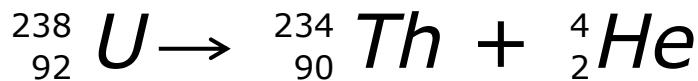
beta decay:

During beta decay, a neutron changes into a proton and an _____

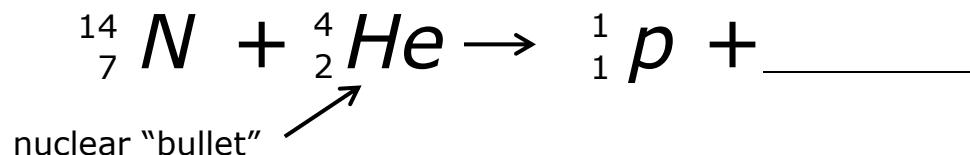
half-life:

- the _____ it takes for _____ the _____ of a radioactive sample to _____
- ranges from a fraction of a _____ to billions of _____
- is _____ affected by _____ conditions

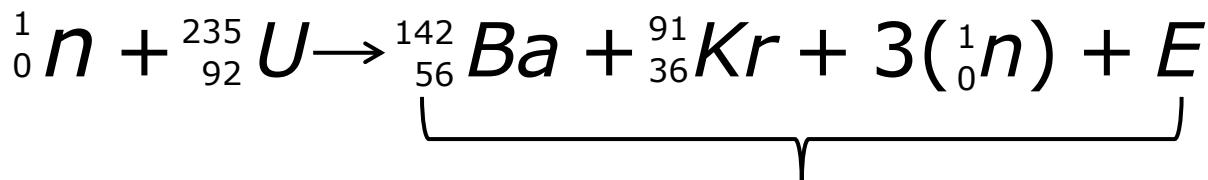
The Chemistry Quiz


CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____


Lesson 162: Types of Nuclear Reactions Notes Chemistry with Lab

natural transmutation – Uranium spontaneously decays.

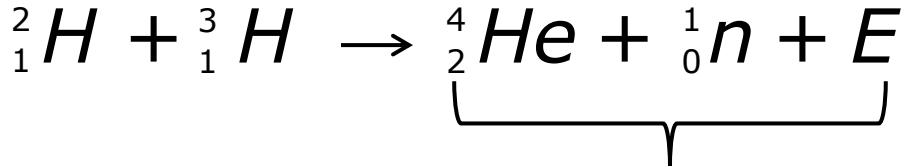


artificial transmutation – bombardment of a stable isotope to force it to decay.

When the bullets are _____ charged, they are _____ by the nucleus they are bombarding. To overcome the repulsions, they must be _____ to very high speeds by _____ accelerators.

nuclear fission – Heavy nuclei are bombarded with neutrons and split.

Mass of particles produced is slightly _____ than the mass of the reactants.


This mass is converted into _____ ($E = \text{_____}$)

- critical mass: _____ mass of _____ material required for a _____
- nuclear reactors: control fission _____ reactions to produce energy dangers:

Lesson 162: Types of Nuclear Reactions (cont.)

Chemistry with Lab

nuclear fusion – combination of _____ nuclei into _____ with release of _____

Mass of particles produced is much _____ than the mass of the reactants.

This mass is converted into _____ ($E = \underline{\hspace{2cm}}$)

List advantages and problems with using fusion as an energy source:

Lesson 167: Nuclear Decay

Chemistry with Lab

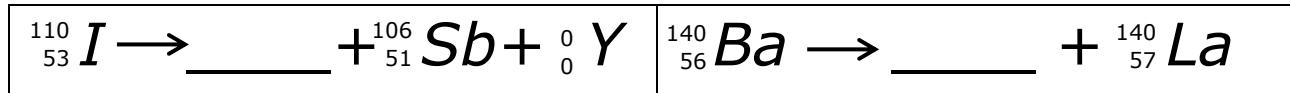
1. Fill in the table below and then use it to figure out what is happening during each type of decay – alpha, beta, and gamma.

Parent Isotope	Particle Emitted	New, Daughter Isotope	Alpha, Beta, or Gamma Decay?	# of protons lost or gained by "parent"	Change in mass number
$^{226}_{88} Ra$	\rightarrow $^4_2 He$	$+ ^{222}_{86} Rn$	Alpha	Lost 2	Minus 4
$^{214}_{84} Po$	\rightarrow $^4_2 He$	$+ ^{210}_{82} Pb$			
$^{47}_{20} Ca$	\rightarrow $^0_{-1} e^-$	$+ ^{47}_{21} Sc$			
$^{148}_{64} Ra$	\rightarrow $^4_2 He$	$+ ^{144}_{62} Sm$			
$^{14}_{6} C$	\rightarrow $^0_{-1} e^-$	$+ ^{14}_{7} N$			
$^{148}_{64} Gd$	\rightarrow $^0_0 Y$	$+ ^{148}_{64} Gd$			

2. What changes take place in the nucleus when an alpha particle is emitted?

3. What is the identity of an alpha particle?

4. What changes take place in the nucleus when a beta particle is emitted?


5. Which particle is associated with beta decay?

6. Fill in the missing numbers and elements from these nuclear reactions:

$^{40}_{\underline{\hspace{1cm}}} \rightarrow ^0_{-1} e + ^{40}_{20} Ca$	$\underline{\hspace{1cm}} \rightarrow ^4_2 He + ^{226}_{88} Ra$
$^{35}_{14} Si \rightarrow ^0_{-1} e + \underline{\hspace{1cm}}$	$^{238}_{92} U \rightarrow + ^4_2 He + \underline{\hspace{1cm}}$

Lesson 167: Nuclear Decay (cont.)

Chemistry with Lab

7. a) Show the alpha decay of radon-198

b) Show the beta decay of uranium-237

8. Plutonium-244 undergoes gamma decay. What are the products of this reaction?

9. Does the identity of an atom change during radioactive decay? Why or why not?

10. List the 3 types of radiation (alpha, beta, gamma) in order from least penetrating to most penetrating.

11. What is the difference between nuclear fusion and nuclear fission?

Lesson 168: Kinetics and Equilibrium Terms

Chemistry with Lab

1. **Kinetics** – The study of the factors that govern how rapidly reactions occur.
2. **Collision theory** – The rate of a reaction is proportional to the number of collisions that occur each second between the reactants.
3. **Effective collision** – A collision in which the colliding particles approach each other at the proper angle and with the proper amount of energy.
4. **Catalyst** – A substance, usually used in small amounts relative to the reactants, that modifies and increases the rate of a reaction without being consumed in the process.
5. **Inhibitor** – One that inhibits, as a substance that retards or stops a chemical reaction.
6. **Enzyme** – Any of numerous proteins or conjugated proteins produced by living organisms and functioning as biochemical catalysts.
7. **Activation energy** – The minimum kinetic energy that must be possessed by the reactants in order to give effective collision (one that produces products).
8. **Potential Energy Diagram** – A plot of the change in potential energy that occurs during a chemical reaction.
9. **Transition state** – The moment during a reaction when the species involved have acquired the minimum amount of potential energy needed for a successful reaction.
10. **Reaction rate** – How quickly the reactants disappear and the products form.
11. **Reversible reaction** – a reaction in which the equilibrium constant is such that the reaction can be made to proceed at a detectable rate in either direction under appropriate conditions. A reversible reaction is a chemical reaction that results in an equilibrium mixture of reactants and products.
 - For a reaction involving two reactants and two products, this can be expressed symbolically as: $aA + bB \rightleftharpoons cC + dD$
 - A and B can react to form C and D or, in the reverse action, C and D can react to form A and B.
12. **Le Châtelier's principle** – When a system that is in dynamic equilibrium is subjected to a disturbance that upsets the equilibrium, the system undergoes a change that counteracts the disturbance and, if possible, restores the equilibrium.

Lesson 168: Kinetics and Equilibrium Terms

Chemistry with Lab

13. **Stress** – An applied force or system of forces that tends to shift a reaction.
14. **Endothermic** – Characterized by or causing the absorption of heat.
15. **Exothermic** – Releasing heat.

Lesson 169: Reaction Rates Notes

Chemistry with Lab

Reaction rate:

- the change in _____ of the _____ per unit of time
- speed at which _____ disappear and _____ appear

The study of reaction rates is called _____.

- ✓ In order for a reaction to occur, reacting _____ must _____ effectively.
- ✓ In an _____ collision, the _____ particles collide with the correct _____ and the proper amount of _____.

Factors affecting reaction rates:

- _____ of reactants –
 - The _____ of the reactants, types of _____ involved, and state of _____ all affect reaction rates.
- _____ of reactants –
 - Increasing the concentration of reactants → more _____ collisions → increases _____ of reaction
 - Increasing the _____ of the reactants (_____ only)
→ increases the _____ → increases _____
→ increases _____

Lesson 169: Reaction Rates Notes (cont.)

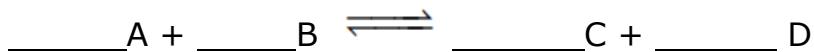
Chemistry with Lab

- _____ of reactants –
 - Increasing _____ of reactants → more _____ → increased _____ of reaction.
- _____ –
 - A substance that _____ the rate of a reaction without being permanently _____
 - Increases the rate of reaction by _____ the required amount of _____ to achieve _____ collisions
- _____ area of reactants –
 - Increasing surface _____ → more _____ → increases _____ of reaction.

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____
4. _____ 5. _____

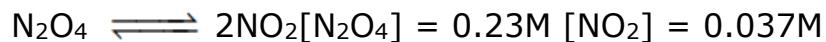
Lesson 172: Le Chatelier's Principle/Keg Notes Chemistry with Lab


A reaction in which the _____ can react to form the _____ is called a _____ reaction.

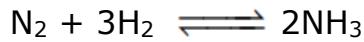
Chemical _____ occurs when the _____ in a _____ reaction form the _____ at the same _____ that _____ form _____.

At equilibrium:

- the _____ of the reactants and products does not _____
- the concentration of reactants can be _____ to, _____, or _____ the concentration of the products.


$$K_{eq} = \frac{[\quad]^c [\quad]^d}{[\quad]^a [\quad]^b}$$

If K_{eq} is...	... reaction is favored
= 1	neither
<1	
>1	


Lesson 172: Le Chatelier's Principle/Keg (cont.) Chemistry with Lab

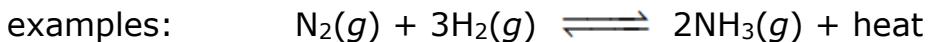
Ex. #1: Calculate K_{eq} for the following reaction using the given equilibrium concentrations. Then determine whether the forward or reverse reaction is favored.

Ex. #2: Calculate K_{eq} for the following reaction using the given equilibrium concentrations.

$$[N_2] = \underline{\hspace{2cm}} \quad [H_2] = \underline{\hspace{2cm}} \quad [NH_3] = \underline{\hspace{2cm}}$$

The reaction is favored.

LeChatelier's Principle:


When a is applied to a system in a state of equilibrium, the system reacts in a way to the stress.

Lesson 172: Le Chatelier's Principle/Keg (cont.) Chemistry with Lab

Stress	System Will Shift
addition of a chemical	
removal of a chemical	
increase in temperature	
decrease in temperature	
*increase in pressure	
*decrease in pressure	
addition of a catalyst	

*applies to reactions involving gases only

- When H_2 is added to the system, the reaction shifts to the _____ to use up the extra H_2 . The amount of _____ produced will increase.
- What if _____ is removed? The reaction shifts to the _____ trying to replenish the N_2 .
- When the temperature increases, the reaction shifts to the _____.
- When the pressure of the system increases, the reaction shifts to the _____, toward the side with _____ particles.
- When a catalyst is added, there will be _____ _____.

Lesson 172: Le Chatelier's Principle/Keg (cont.) Chemistry with Lab

When a system in equilibrium...

shifts:	[products]	[reactants]
to the right		
to the left		

The Chemistry Quiz

CR1. _____ CR2. _____ 1. _____ 2. _____ 3. _____

4. _____ 5. _____

Lesson 172: Le Chatelier's Principle Datasheet

Chemistry with Lab

Table I:

Ion	Color
K^+	
Cl^-	
SCN^-	
Fe^{3+}	
$Fe(SCN)^{2+}$	

Use the table on the left to determine the colors of reactants and products. Write the color in the blanks above the equation below.

Table II:

colors: _____

Chemical Added	Color Change	Direction of Shift
$FeCl_3$		
$NaOH$		
$KSCN$		

Conclusions:

According to LeChatelier's Principle, when a _____ is applied to a system in equilibrium, the system will readjust to _____ the stress, restoring a state of equilibrium.

Lesson 172: Le Chatelier's Principle (cont.)

Chemistry with Lab

For each procedure in Table II, identify the stress (ex. – addition of a reactant, removal of a product, etc.) and the reason for the shift in equilibrium (ex. – shift to the right uses up reactants):

Stress

Reason for Shift

Hint: NaOH reacts with Fe^{3+} to form solid $\text{Fe}(\text{OH})_3$

Lesson 174: Exploring Equilibrium Lab

Chemistry with Lab

Look at the screen and observe everything you can find out about the reaction pictured:

1. What type of reaction is it? Is it endo or exothermic?
2. Predict what will happen when 50 A's are added to the box and 50 BC's are added.
3. In the box labeled "current amounts," enter 50 for A and 50 for BC.
 - a. Was your prediction correct? Describe and explain any differences.
 - b. Describe the nature of dynamic equilibrium when small numbers of particles (such as 50, as compared to 6.02×10^{23}) are present.
4. Predict what will happen when the temperature is raised so it is NOT above the activation energy max but IS above the energy level of the products.
5. Raise the temperature as described. Did your prediction come true? Describe and explain any differences.
6. Predict what will happen when the temperature is raised so it is above the activation energy max.

Lesson 174: Exploring Equilibrium Lab (cont.)

Chemistry with Lab

7. Raise the temperature as described. Again, was your prediction correct? Describe and explain any differences.
8. What did you notice about the rate at which reactants/products fluctuated between the three different temperatures? If you didn't notice anything, hit "reset all" and test it again.
9. Did temperature affect equilibrium position? Did it affect it in the way you expected? Explain.
10. Did temperature affect reaction rate? Did it affect it in the way you expected? Explain.
11. Write the equilibrium expression for this reaction. Because of the way the numbers fluctuate, it would be hard to calculate the equilibrium constant, but how would you do it if the numbers ever settled down?

Lesson 179: Final Exam

Chemistry with Lab

1. Match the unit of measure to the metric equivalent:

<input type="checkbox"/> gram	a. length
<input type="checkbox"/> Celsius	b. mass
<input type="checkbox"/> liter	c. volume
<input type="checkbox"/> meter	d. temperature

2. Number the steps of the scientific method in the correct order:

<input type="checkbox"/> Construct hypothesis
<input type="checkbox"/> Ask a question
<input type="checkbox"/> Report results
<input type="checkbox"/> Do background research
<input type="checkbox"/> Test with experiment

3. Write 0.0056 in scientific notation.

4. Of what does an atom consist?

5. What part of the periodic table is a group?

6. A unit of magnesium carbonate contains one magnesium atom, one carbon atom, and three oxygen atoms. What is its chemical formula?

7. Who postulated the term “quanta” to explain light?

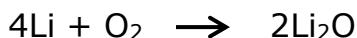
8. What term describes the average of the masses of all of an element’s isotopes (often displayed as a decimal number on the periodic table of the elements)?

9. A proton has what electrical charge?

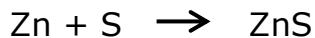
Lesson 179: Final Exam (cont.)

Chemistry with Lab

10. Who arranged the elements on the periodic table by increasing atomic number, like we see it today?
11. What is the term for the energy required to remove an electron from a neutral atom?
12. _____ bonding produces substances that are hard, or difficult to crush.
13. When an atom gains electrons, an ion with a _____ charge is formed.
14. Determine whether the compound NH^3 is ionic or covalent and name it appropriately.
15. Determine whether the compound zinc sulfide is ionic or covalent and write the appropriate formula for it.
16. Use the activity series to write balanced chemical equations for single replacement reactions. If no reaction will occur, write "NR."
 $\text{Cl}_2(\text{g}) + \text{NaBr}(\text{aq})$
17. Solid lithium hydroxide reacts with carbon dioxide to form solid lithium carbonate and liquid water.
18. What is the molecular formula for a compound with an empirical formula of NO_2 and a molar mass of 92.0 g/mol?


Lesson 179: Final Exam (cont.)

Chemistry with Lab


19. Convert 45g Se to moles of Se.

20. Lithium combines with oxygen according to the following equation. How many grams of Li_2O can be formed when 2.00g of lithium reacts with 2.00g of oxygen? (Atomic mass: Li = 6.94, O = 16.00)

a. 3.63 b. 3.74 c. 4.00 d. 3.12

21. Zinc and sulfur react to form zinc sulfide. How many grams of ZnS can be formed when 12.0g of Zn reacts with 6.0g of S? (Atomic mass: Zn = 65.38, S = 32.06)

a. 19.7 b. 17.9 c. 13.8 d. 18.5

22. When atmospheric pressure increases, how does the height of the column of mercury change?

23. A quantity of gas is collected over water at 15°C. The manometer indicated a pressure of 24.0 kPa. What would be the pressure of the dry gas? (The constant needed is 1.7 kPa.)

Lesson 179: Final Exam (cont.)

Chemistry with Lab

24. How many liters of 4M solution can be made using 100 grams of lithium bromide?

25. What is the concentration of a solution with a volume 3.3mL that contains 12 grams of ammonium sulfite?

26. Define solubility.

27. (Refer to the linked graph for numbers 27 and 28.) At 50°C, how many grams of KNO_3 will dissolve?

28. _____ and _____ have the same solubility at approximately 78°C.

29. Name this acid: H_2SO_3 .

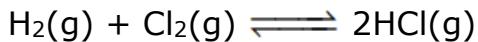
30. Name this base or salt: MgSO_4 .

31. Calculate the amount of heat released when 25.0g of water at 25.0°C cools to 0.0°C.

32. Calculate the amount of heat released when the same sample from number 31 freezes.

Lesson 179: Final Exam (cont.)

Chemistry with Lab


33. What changes take place in the nucleus when an alpha particle is emitted?

34. Which particle is associated with beta decay?

35. In the reaction $2\text{NO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{N}_2\text{O(g)} + \text{H}_2\text{O(g)} + 36 \text{ kJ}$, which direction will the equilibrium shift if the pressure is increased?

a. left b. right

36. How would an increase in pressure affect the $[\text{H}_2]$ in the following reaction?

a. increase b. decrease c. no change

37. List the 3 types of radiation (α , β , γ) in order from least penetrating to most penetrating.

38. Does the identity of an atom change during radioactive decay? Why or why not?

39. What is the word equation for the neutralization of a strong acid and strong base?

40. Which answer best describes a substance whose formula is O_2 ?

a. a compound b. an atom c. an element

41. Calculate the molar mass for ethane, C_2H_6 .

Lesson 179: Final Exam (cont.)

Chemistry with Lab

42. When solid potassium nitrate is heated, it decomposes to solid potassium nitrite, and oxygen gas is evolved. The type of bonding that results in volatile liquids is:

- a. ionic
- b. covalent
- c. metallic

43. Which element is a member of the Transition Metal family?

- a. Zn
- b. Mg
- c. At
- d. Ca

44. What is the term for the region of space where an electron is likely to be found?

- a. Orbital
- b. Home
- c. Sector
- d. Section